Update dino.txt
Browse files
dino.txt
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
-
def
|
2 |
temp_output_path = "/tmp/output_video.mp4"
|
3 |
temp_frames_dir = tempfile.mkdtemp()
|
4 |
frame_count = 0
|
5 |
-
previous_detections = {} #
|
6 |
|
7 |
-
# DINO-X
|
8 |
dinox_config = Config(DINOX_API_KEY)
|
9 |
dinox_client = Client(dinox_config)
|
10 |
-
|
11 |
-
|
12 |
try:
|
13 |
# Convert video to MP4 if necessary
|
14 |
if not video_path.endswith(".mp4"):
|
@@ -36,79 +35,88 @@ def detect_objects_in_video_with_dinox(video_path):
|
|
36 |
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
|
37 |
cv2.imwrite(frame_path, frame)
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
|
42 |
-
# Track current frame detections
|
43 |
-
|
44 |
-
for prediction in
|
45 |
class_name = prediction['class']
|
46 |
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
|
47 |
object_id = f"{class_name}_{x}_{y}"
|
48 |
|
49 |
-
if object_id not in
|
50 |
-
|
51 |
|
52 |
# Draw bounding box for detected products
|
53 |
cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
|
54 |
cv2.putText(frame, class_name, (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
55 |
|
56 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
image_url = dinox_client.upload_file(frame_path)
|
58 |
task = DinoxTask(
|
59 |
image_url=image_url,
|
60 |
-
prompts=[TextPrompt(text=DINOX_PROMPT)]
|
61 |
)
|
62 |
dinox_client.run_task(task)
|
63 |
dinox_pred = task.result.objects
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
for obj in dinox_pred:
|
68 |
-
dinox_box = obj.bbox
|
69 |
class_name = obj.category.strip().lower()
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
if object_id not in current_detections_dinox:
|
75 |
-
current_detections_dinox[object_id] = class_name
|
76 |
-
|
77 |
-
# Draw bounding box for unclassified products
|
78 |
-
x1, y1, x2, y2 = dinox_box
|
79 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
80 |
-
cv2.putText(frame, f"{class_name} {obj.score:.2f}", (int(x1), int(y1-10)),
|
81 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
100 |
y_offset = 20
|
101 |
-
for line in
|
|
|
|
|
|
|
|
|
|
|
102 |
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
103 |
-
y_offset += 30
|
104 |
|
105 |
# Write processed frame to output video
|
106 |
output_video.write(frame)
|
107 |
frame_count += 1
|
108 |
|
109 |
-
# Update previous detections for the next frame
|
110 |
-
previous_detections = current_detections_yolo
|
111 |
-
|
112 |
video.release()
|
113 |
output_video.release()
|
114 |
|
@@ -116,3 +124,4 @@ def detect_objects_in_video_with_dinox(video_path):
|
|
116 |
|
117 |
except Exception as e:
|
118 |
return None, f"An error occurred: {e}"
|
|
|
|
1 |
+
def detect_objects_in_video(video_path):
|
2 |
temp_output_path = "/tmp/output_video.mp4"
|
3 |
temp_frames_dir = tempfile.mkdtemp()
|
4 |
frame_count = 0
|
5 |
+
previous_detections = {} # Untuk menyimpan deteksi objek dari frame sebelumnya
|
6 |
|
7 |
+
# Inisialisasi DINO-X untuk deteksi unclassified products
|
8 |
dinox_config = Config(DINOX_API_KEY)
|
9 |
dinox_client = Client(dinox_config)
|
10 |
+
|
|
|
11 |
try:
|
12 |
# Convert video to MP4 if necessary
|
13 |
if not video_path.endswith(".mp4"):
|
|
|
35 |
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
|
36 |
cv2.imwrite(frame_path, frame)
|
37 |
|
38 |
+
# Process predictions for the current frame using YOLO (Nestlé products)
|
39 |
+
yolo_pred = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
|
40 |
|
41 |
+
# Track current frame detections (Nestlé)
|
42 |
+
current_detections = {}
|
43 |
+
for prediction in yolo_pred['predictions']:
|
44 |
class_name = prediction['class']
|
45 |
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
|
46 |
object_id = f"{class_name}_{x}_{y}"
|
47 |
|
48 |
+
if object_id not in current_detections:
|
49 |
+
current_detections[object_id] = class_name
|
50 |
|
51 |
# Draw bounding box for detected products
|
52 |
cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
|
53 |
cv2.putText(frame, class_name, (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
54 |
|
55 |
+
# Calculate product counts (Nestlé)
|
56 |
+
nestle_counts = {}
|
57 |
+
for detection_id in current_detections.keys():
|
58 |
+
class_name = current_detections[detection_id]
|
59 |
+
nestle_counts[class_name] = nestle_counts.get(class_name, 0) + 1
|
60 |
+
|
61 |
+
# Update previous_detections for the next frame
|
62 |
+
previous_detections = current_detections
|
63 |
+
|
64 |
+
# --- Deteksi Unclassified Products menggunakan DINO-X ---
|
65 |
image_url = dinox_client.upload_file(frame_path)
|
66 |
task = DinoxTask(
|
67 |
image_url=image_url,
|
68 |
+
prompts=[TextPrompt(text=DINOX_PROMPT)] # Define the DINO-X prompt here
|
69 |
)
|
70 |
dinox_client.run_task(task)
|
71 |
dinox_pred = task.result.objects
|
72 |
|
73 |
+
# Filter & Hitung Unclassified Products
|
74 |
+
unclassified_counts = {}
|
75 |
for obj in dinox_pred:
|
|
|
76 |
class_name = obj.category.strip().lower()
|
77 |
+
if class_name not in unclassified_counts:
|
78 |
+
unclassified_counts[class_name] = 1
|
79 |
+
else:
|
80 |
+
unclassified_counts[class_name] += 1
|
81 |
|
82 |
+
# Draw bounding box for unclassified objects
|
83 |
+
x1, y1, x2, y2 = obj.bbox
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
85 |
+
cv2.putText(frame, f"{class_name} {obj.score:.2f}", (int(x1), int(y1-10)),
|
86 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
87 |
|
88 |
+
# --- Teks Overlay untuk menghitung produk ---
|
89 |
+
# Format counting untuk Nestlé (dari YOLO)
|
90 |
+
nestle_count_text = ""
|
91 |
+
total_nestle = 0
|
92 |
+
for class_name, count in nestle_counts.items():
|
93 |
+
nestle_count_text += f"{class_name}: {count}\n"
|
94 |
+
total_nestle += count
|
95 |
+
nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"
|
96 |
+
|
97 |
+
# Format counting untuk Unclassified (dari DINO-X)
|
98 |
+
unclassified_count_text = ""
|
99 |
+
total_unclassified = 0
|
100 |
+
for class_name, count in unclassified_counts.items():
|
101 |
+
unclassified_count_text += f"{class_name}: {count}\n"
|
102 |
+
total_unclassified += count
|
103 |
+
unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"
|
104 |
+
|
105 |
+
# Overlay teks ke frame
|
106 |
y_offset = 20
|
107 |
+
for line in nestle_count_text.split("\n"):
|
108 |
+
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
109 |
+
y_offset += 30
|
110 |
+
|
111 |
+
y_offset += 30 # Slight gap between sections
|
112 |
+
for line in unclassified_count_text.split("\n"):
|
113 |
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
114 |
+
y_offset += 30
|
115 |
|
116 |
# Write processed frame to output video
|
117 |
output_video.write(frame)
|
118 |
frame_count += 1
|
119 |
|
|
|
|
|
|
|
120 |
video.release()
|
121 |
output_video.release()
|
122 |
|
|
|
124 |
|
125 |
except Exception as e:
|
126 |
return None, f"An error occurred: {e}"
|
127 |
+
|