muhammadsalmanalfaridzi commited on
Commit
c440f41
·
verified ·
1 Parent(s): b25ef76

Update dino.txt

Browse files
Files changed (1) hide show
  1. dino.txt +266 -120
dino.txt CHANGED
@@ -1,129 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def detect_objects_in_video(video_path):
2
  temp_output_path = "/tmp/output_video.mp4"
3
  temp_frames_dir = tempfile.mkdtemp()
4
  frame_count = 0
5
  previous_detections = {} # Untuk menyimpan deteksi objek dari frame sebelumnya
6
 
7
- # Inisialisasi DINO-X untuk deteksi unclassified products
8
- dinox_config = Config(DINOX_API_KEY)
9
- dinox_client = Client(dinox_config)
 
 
 
10
 
11
- try:
12
- # Convert video to MP4 if necessary
13
- if not video_path.endswith(".mp4"):
14
- video_path, err = convert_video_to_mp4(video_path, temp_output_path)
15
- if not video_path:
16
- return None, f"Video conversion error: {err}"
17
-
18
- # Read video and process frames
19
- video = cv2.VideoCapture(video_path)
20
- frame_rate = int(video.get(cv2.CAP_PROP_FPS))
21
- frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
22
- frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
23
- frame_size = (frame_width, frame_height)
24
-
25
- # VideoWriter for output video
26
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
27
- output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
28
-
29
- while True:
30
- ret, frame = video.read()
31
- if not ret:
32
- break
33
-
34
- # Save frame temporarily for predictions
35
- frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
36
- cv2.imwrite(frame_path, frame)
37
-
38
- # Process predictions for the current frame using YOLO (Nestlé products)
39
- yolo_pred = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
40
-
41
- # Track current frame detections (Nestlé)
42
- current_detections = {}
43
- for prediction in yolo_pred['predictions']:
44
- class_name = prediction['class']
45
- x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
46
- object_id = f"{class_name}_{x}_{y}"
47
-
48
- if object_id not in current_detections:
49
- current_detections[object_id] = class_name
50
-
51
- # Draw bounding box for detected products
52
- cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
53
- cv2.putText(frame, class_name, (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
54
-
55
- # Calculate product counts (Nestlé)
56
- nestle_counts = {}
57
- for detection_id in current_detections.keys():
58
- class_name = current_detections[detection_id]
59
- nestle_counts[class_name] = nestle_counts.get(class_name, 0) + 1
60
-
61
- # Update previous_detections for the next frame
62
- previous_detections = current_detections
63
-
64
- # --- Deteksi Unclassified Products menggunakan DINO-X ---
65
- image_url = dinox_client.upload_file(frame_path)
66
- task = DinoxTask(
67
- image_url=image_url,
68
- prompts=[TextPrompt(text=DINOX_PROMPT)] # Define the DINO-X prompt here
69
- )
70
- dinox_client.run_task(task)
71
- dinox_pred = task.result.objects
72
-
73
- # Filter & Hitung Unclassified Products
74
- unclassified_counts = {}
75
- for obj in dinox_pred:
76
- # Ganti nama kelas menjadi 'unclassified'
77
- class_name = "unclassified" # Ganti label menjadi 'unclassified'
78
-
79
- if class_name not in unclassified_counts:
80
- unclassified_counts[class_name] = 1
81
- else:
82
- unclassified_counts[class_name] += 1
83
-
84
- # Draw bounding box for unclassified objects
85
- x1, y1, x2, y2 = obj.bbox
86
- cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
87
- cv2.putText(frame, f"{class_name} {obj.score:.2f}", (int(x1), int(y1-10)),
88
- cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
89
-
90
- # --- Teks Overlay untuk menghitung produk ---
91
- # Format counting untuk Nestlé (dari YOLO)
92
- nestle_count_text = ""
93
- total_nestle = 0
94
- for class_name, count in nestle_counts.items():
95
- nestle_count_text += f"{class_name}: {count}\n"
96
- total_nestle += count
97
- nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"
98
-
99
- # Format counting untuk Unclassified (dari DINO-X)
100
- unclassified_count_text = ""
101
- total_unclassified = 0
102
- for class_name, count in unclassified_counts.items():
103
- unclassified_count_text += f"{class_name}: {count}\n"
104
- total_unclassified += count
105
- unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"
106
-
107
- # Overlay teks ke frame
108
- y_offset = 20
109
- for line in nestle_count_text.split("\n"):
110
- cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
111
- y_offset += 30
112
-
113
- y_offset += 30 # Slight gap between sections
114
- for line in unclassified_count_text.split("\n"):
115
- cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
116
- y_offset += 30
117
-
118
- # Write processed frame to output video
119
- output_video.write(frame)
120
- frame_count += 1
121
-
122
- video.release()
123
- output_video.release()
124
-
125
- return temp_output_path
126
 
127
- except Exception as e:
128
- return None, f"An error occurred: {e}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
 
 
1
+ import gradio as gr
2
+ import cv2
3
+ import numpy as np
4
+ import tempfile
5
+ import os
6
+ import requests
7
+ from dds_cloudapi_sdk import Config, Client
8
+ from dds_cloudapi_sdk.tasks.dinox import DinoxTask
9
+ from dds_cloudapi_sdk import TextPrompt
10
+ from dds_cloudapi_sdk.tasks.types import DetectionTarget
11
+ from roboflow import Roboflow
12
+ from dotenv import load_dotenv
13
+
14
+ # ========== Konfigurasi ==========
15
+ load_dotenv()
16
+
17
+ # Roboflow Config
18
+ rf_api_key = os.getenv("ROBOFLOW_API_KEY")
19
+ workspace = os.getenv("ROBOFLOW_WORKSPACE")
20
+ project_name = os.getenv("ROBOFLOW_PROJECT")
21
+ model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
22
+
23
+ # DINO-X Config
24
+ DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
25
+ DINOX_PROMPT = "beverage . bottle . cans . boxed milk . milk"
26
+
27
+ # Inisialisasi Model YOLO (Roboflow)
28
+ rf = Roboflow(api_key=rf_api_key)
29
+ project = rf.workspace(workspace).project(project_name)
30
+ yolo_model = project.version(model_version).model
31
+
32
+ # Inisialisasi DINO-X API Client
33
+ dinox_config = Config(DINOX_API_KEY)
34
+ dinox_client = Client(dinox_config)
35
+
36
+ # Fungsi untuk mendeteksi objek pada gambar dan video
37
+ def detect_combined(image_path_or_video_path, is_video=False):
38
+ # Jika input adalah video
39
+ if is_video:
40
+ return detect_objects_in_video(image_path_or_video_path)
41
+
42
+ # Jika input adalah gambar
43
+ return detect_objects_in_image(image_path_or_video_path)
44
+
45
+ def detect_objects_in_image(image_path):
46
+ try:
47
+ # Membaca gambar
48
+ img = cv2.imread(image_path)
49
+
50
+ # --- Deteksi menggunakan YOLO (Nestlé) ---
51
+ yolo_pred = yolo_model.predict(image_path, confidence=50, overlap=80).json()
52
+
53
+ # Hitung produk Nestlé per kelas
54
+ nestle_class_count = {}
55
+ nestle_boxes = []
56
+ for pred in yolo_pred['predictions']:
57
+ class_name = pred['class']
58
+ nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
59
+ nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
60
+
61
+ # --- Deteksi menggunakan DINO-X (Unclassified Products) ---
62
+ image_url = dinox_client.upload_file(image_path)
63
+ task = DinoxTask(
64
+ image_url=image_url,
65
+ prompts=[TextPrompt(text=DINOX_PROMPT)],
66
+ bbox_threshold=0.25,
67
+ targets=[DetectionTarget.BBox]
68
+ )
69
+ dinox_client.run_task(task)
70
+ dinox_pred = task.result.objects
71
+
72
+ # Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO
73
+ competitor_class_count = {}
74
+ competitor_boxes = []
75
+ for obj in dinox_pred:
76
+ dinox_box = obj.bbox
77
+ # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
78
+ if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections
79
+ class_name = obj.category.strip().lower()
80
+ competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
81
+ competitor_boxes.append({
82
+ "class": class_name,
83
+ "box": dinox_box,
84
+ "confidence": obj.score
85
+ })
86
+
87
+ # --- Overlay Teks untuk Total Produk ---
88
+ nestle_count_text = ""
89
+ total_nestle = 0
90
+ for class_name, count in nestle_class_count.items():
91
+ nestle_count_text += f"{class_name}: {count}\n"
92
+ total_nestle += count
93
+ nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"
94
+
95
+ unclassified_count_text = ""
96
+ total_unclassified = 0
97
+ for class_name, count in competitor_class_count.items():
98
+ unclassified_count_text += f"{class_name}: {count}\n"
99
+ total_unclassified += count
100
+ unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"
101
+
102
+ # --- Visualisasi Deteksi YOLO (Nestlé) ---
103
+ for pred in yolo_pred['predictions']:
104
+ x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
105
+ cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
106
+ cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
107
+
108
+ # --- Visualisasi Deteksi DINO-X (Unclassified) ---
109
+ for comp in competitor_boxes:
110
+ x1, y1, x2, y2 = comp['box']
111
+ display_name = "unclassified"
112
+ cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
113
+ cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
114
+ (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
115
+
116
+ # Simpan gambar output
117
+ output_path = "/tmp/combined_output_image.jpg"
118
+ cv2.imwrite(output_path, img)
119
+
120
+ return output_path, nestle_count_text + "\n" + unclassified_count_text
121
+
122
+ except Exception as e:
123
+ return image_path, f"Error: {str(e)}"
124
+
125
  def detect_objects_in_video(video_path):
126
  temp_output_path = "/tmp/output_video.mp4"
127
  temp_frames_dir = tempfile.mkdtemp()
128
  frame_count = 0
129
  previous_detections = {} # Untuk menyimpan deteksi objek dari frame sebelumnya
130
 
131
+ # Membuka video
132
+ video = cv2.VideoCapture(video_path)
133
+ frame_rate = int(video.get(cv2.CAP_PROP_FPS))
134
+ frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
135
+ frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
136
+ frame_size = (frame_width, frame_height)
137
 
138
+ # VideoWriter untuk menyimpan hasil video
139
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
140
+ output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
+ while True:
143
+ ret, frame = video.read()
144
+ if not ret:
145
+ break
146
+
147
+ # Simpan frame sementara untuk prediksi
148
+ frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
149
+ cv2.imwrite(frame_path, frame)
150
+
151
+ # --- Deteksi menggunakan YOLO (Nestlé) ---
152
+ yolo_pred = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
153
+
154
+ # Hitung produk Nestlé per kelas
155
+ nestle_class_count = {}
156
+ nestle_boxes = []
157
+ for pred in yolo_pred['predictions']:
158
+ class_name = pred['class']
159
+ nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
160
+ nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
161
+
162
+ # --- Deteksi menggunakan DINO-X (Unclassified Products) ---
163
+ image_url = dinox_client.upload_file(frame_path)
164
+ task = DinoxTask(
165
+ image_url=image_url,
166
+ prompts=[TextPrompt(text=DINOX_PROMPT)],
167
+ bbox_threshold=0.25,
168
+ targets=[DetectionTarget.BBox]
169
+ )
170
+ dinox_client.run_task(task)
171
+ dinox_pred = task.result.objects
172
+
173
+ # Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO
174
+ competitor_class_count = {}
175
+ competitor_boxes = []
176
+ for obj in dinox_pred:
177
+ dinox_box = obj.bbox
178
+ # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
179
+ if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections
180
+ class_name = obj.category.strip().lower()
181
+ competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
182
+ competitor_boxes.append({
183
+ "class": class_name,
184
+ "box": dinox_box,
185
+ "confidence": obj.score
186
+ })
187
+
188
+ # --- Overlay Teks untuk Total Produk ---
189
+ nestle_count_text = ""
190
+ total_nestle = 0
191
+ for class_name, count in nestle_class_count.items():
192
+ nestle_count_text += f"{class_name}: {count}\n"
193
+ total_nestle += count
194
+ nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"
195
+
196
+ unclassified_count_text = ""
197
+ total_unclassified = 0
198
+ for class_name, count in competitor_class_count.items():
199
+ unclassified_count_text += f"{class_name}: {count}\n"
200
+ total_unclassified += count
201
+ unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"
202
+
203
+ # Overlay teks ke frame
204
+ y_offset = 20
205
+ for line in nestle_count_text.split("\n"):
206
+ cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
207
+ y_offset += 30
208
+
209
+ y_offset += 30 # Slight gap between sections
210
+ for line in unclassified_count_text.split("\n"):
211
+ cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
212
+ y_offset += 30
213
+
214
+ # --- Visualisasi Deteksi YOLO (Nestlé) ---
215
+ for pred in yolo_pred['predictions']:
216
+ x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
217
+ cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
218
+ cv2.putText(frame, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
219
+
220
+ # --- Visualisasi Deteksi DINO-X (Unclassified) ---
221
+ for comp in competitor_boxes:
222
+ x1, y1, x2, y2 = comp['box']
223
+ display_name = "unclassified"
224
+ cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
225
+ cv2.putText(frame, f"{display_name} {comp['confidence']:.2f}",
226
+ (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
227
+
228
+ # Tulis frame ke video output
229
+ output_video.write(frame)
230
+ frame_count += 1
231
+
232
+ video.release()
233
+ output_video.release()
234
+
235
+ return temp_output_path
236
+
237
+ def is_overlap(box1, boxes2, threshold=0.3):
238
+ # Fungsi untuk deteksi overlap bounding box
239
+ x1_min, y1_min, x1_max, y1_max = box1
240
+ for b2 in boxes2:
241
+ x2, y2, w2, h2 = b2
242
+ x2_min = x2 - w2/2
243
+ x2_max = x2 + w2/2
244
+ y2_min = y2 - h2/2
245
+ y2_max = y2 + h2/2
246
+
247
+ # Hitung area overlap
248
+ dx = min(x1_max, x2_max) - max(x1_min, x2_min)
249
+ dy = min(y1_max, y2_max) - max(y1_min, y2_min)
250
+ if (dx >= 0) and (dy >= 0):
251
+ area_overlap = dx * dy
252
+ area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
253
+ if area_overlap / area_box1 > threshold:
254
+ return True
255
+ return False
256
+
257
+ # ========== Gradio Interface ==========
258
+ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
259
+ gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
260
+
261
+ with gr.Row():
262
+ with gr.Column():
263
+ input_image = gr.Image(type="pil", label="Input Image")
264
+ detect_image_button = gr.Button("Detect Image")
265
+ output_image = gr.Image(label="Detect Object")
266
+ output_text = gr.Textbox(label="Counting Object")
267
+ detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
268
+
269
+ with gr.Column():
270
+ input_video = gr.Video(label="Input Video")
271
+ detect_video_button = gr.Button("Detect Video")
272
+ output_video = gr.Video(label="Output Video")
273
+ detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
274
 
275
+ iface.launch()