multimodalart's picture
Upload 2025 files
22a452a verified
# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKLLTXVideo, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel
from diffusers.utils.testing_utils import enable_full_determinism
from ..test_pipelines_common import PipelineTesterMixin, to_np
enable_full_determinism()
class LTXLatentUpsamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = LTXLatentUpsamplePipeline
params = {"video", "generator"}
batch_params = {"video", "generator"}
required_optional_params = frozenset(["generator", "latents", "return_dict"])
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLLTXVideo(
in_channels=3,
out_channels=3,
latent_channels=8,
block_out_channels=(8, 8, 8, 8),
decoder_block_out_channels=(8, 8, 8, 8),
layers_per_block=(1, 1, 1, 1, 1),
decoder_layers_per_block=(1, 1, 1, 1, 1),
spatio_temporal_scaling=(True, True, False, False),
decoder_spatio_temporal_scaling=(True, True, False, False),
decoder_inject_noise=(False, False, False, False, False),
upsample_residual=(False, False, False, False),
upsample_factor=(1, 1, 1, 1),
timestep_conditioning=False,
patch_size=1,
patch_size_t=1,
encoder_causal=True,
decoder_causal=False,
)
vae.use_framewise_encoding = False
vae.use_framewise_decoding = False
torch.manual_seed(0)
latent_upsampler = LTXLatentUpsamplerModel(
in_channels=8,
mid_channels=32,
num_blocks_per_stage=1,
dims=3,
spatial_upsample=True,
temporal_upsample=False,
)
components = {
"vae": vae,
"latent_upsampler": latent_upsampler,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
video = torch.randn((5, 3, 32, 32), generator=generator, device=device)
inputs = {
"video": video,
"generator": generator,
"height": 16,
"width": 16,
"output_type": "pt",
}
return inputs
def test_inference(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames
generated_video = video[0]
self.assertEqual(generated_video.shape, (5, 3, 32, 32))
expected_video = torch.randn(5, 3, 32, 32)
max_diff = np.abs(generated_video - expected_video).max()
self.assertLessEqual(max_diff, 1e10)
def test_vae_tiling(self, expected_diff_max: float = 0.25):
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to("cpu")
pipe.set_progress_bar_config(disable=None)
# Without tiling
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_without_tiling = pipe(**inputs)[0]
# With tiling
pipe.vae.enable_tiling(
tile_sample_min_height=96,
tile_sample_min_width=96,
tile_sample_stride_height=64,
tile_sample_stride_width=64,
)
inputs = self.get_dummy_inputs(generator_device)
inputs["height"] = inputs["width"] = 128
output_with_tiling = pipe(**inputs)[0]
self.assertLess(
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
expected_diff_max,
"VAE tiling should not affect the inference results",
)
@unittest.skip("Test is not applicable.")
def test_callback_inputs(self):
pass
@unittest.skip("Test is not applicable.")
def test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
pass
@unittest.skip("Test is not applicable.")
def test_inference_batch_consistent(self):
pass
@unittest.skip("Test is not applicable.")
def test_inference_batch_single_identical(self):
pass