Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +82 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import (
|
3 |
+
PaliGemmaProcessor,
|
4 |
+
PaliGemmaForConditionalGeneration,
|
5 |
+
)
|
6 |
+
import streamlit as st
|
7 |
+
from PIL import Image
|
8 |
+
from transformers.image_utils import load_image
|
9 |
+
import os
|
10 |
+
|
11 |
+
# write access token in secrets
|
12 |
+
token = os.environ.get('HF_TOKEN')
|
13 |
+
|
14 |
+
# paligemma model
|
15 |
+
model_id = "google/paligemma2-3b-pt-896"
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def model_setup(model_id):
|
19 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id,torch_dtype=torch.bfloat16,device_map="auto",token=token).eval()
|
20 |
+
processor = PaliGemmaProcessor.from_pretrained(model_id,token=token)
|
21 |
+
return model,processor
|
22 |
+
|
23 |
+
def runModel(prompt,image):
|
24 |
+
model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device)
|
25 |
+
input_len = model_inputs["input_ids"].shape[-1]
|
26 |
+
with torch.inference_mode():
|
27 |
+
generation = model.generate(**model_inputs, max_new_tokens=1000, do_sample=False)
|
28 |
+
generation = generation[0][input_len:]
|
29 |
+
return processor.decode(generation, skip_special_tokens=True)
|
30 |
+
|
31 |
+
def initialize():
|
32 |
+
# initialize chat history
|
33 |
+
st.session_state.messages = []
|
34 |
+
|
35 |
+
### load model
|
36 |
+
model,processor = model_setup(model_id)
|
37 |
+
|
38 |
+
### upload a file
|
39 |
+
uploaded_file = st.file_uploader("Choose an image",on_change=initialize)
|
40 |
+
|
41 |
+
if uploaded_file:
|
42 |
+
st.image(uploaded_file)
|
43 |
+
image = Image.open(uploaded_file).convert("RGB")
|
44 |
+
|
45 |
+
# tasks
|
46 |
+
task = st.radio(
|
47 |
+
"Task",
|
48 |
+
tuple(['Caption','OCR','Segment','Enter your prompt']),
|
49 |
+
horizontal=True)
|
50 |
+
|
51 |
+
# display chat messages from history on app rerun
|
52 |
+
for message in st.session_state.messages:
|
53 |
+
with st.chat_message(message["role"]):
|
54 |
+
st.markdown(message["content"])
|
55 |
+
|
56 |
+
if task == 'Enter your prompt':
|
57 |
+
if prompt := st.chat_input("Type here!",key="question"):
|
58 |
+
# display user message in chat message container
|
59 |
+
with st.chat_message("user"):
|
60 |
+
st.markdown(prompt)
|
61 |
+
# Add user message to chat history
|
62 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
63 |
+
# run the VLM
|
64 |
+
response = runModel(prompt,image)
|
65 |
+
# display assistant response in chat message container
|
66 |
+
with st.chat_message("assistant"):
|
67 |
+
st.markdown(response)
|
68 |
+
# Add assistant response to chat history
|
69 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
70 |
+
else:
|
71 |
+
# display user message in chat message container
|
72 |
+
with st.chat_message("user"):
|
73 |
+
st.markdown(task)
|
74 |
+
# Add user message to chat history
|
75 |
+
st.session_state.messages.append({"role": "user", "content": task})
|
76 |
+
# run the VLM
|
77 |
+
response = runModel(task,image)
|
78 |
+
# display assistant response in chat message container
|
79 |
+
with st.chat_message("assistant"):
|
80 |
+
st.markdown(response)
|
81 |
+
# Add assistant response to chat history
|
82 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
accelerate
|
4 |
+
pillow
|