File size: 6,798 Bytes
6b25f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Batch Face for Modern Research

## 🚧Documentation under construction, check tests folder for more details. 🚧

This repo provides the out-of-box face detection and face alignment with batch input support and enables real-time application on CPU.

## Features
1. Batch input support for faster data processing.
2. Smart API.
3. Ultrafast with inference runtime acceleration.
4. Automatically download pre-trained weights.
5. Minimal dependencies.
6. Unleash the power of GPU for batch processing.

### Requirements

- Linux, Windows or macOS
- Python 3.5+ (it may work with other versions too)
- opencv-python
- PyTorch (>=1.0) 
- ONNX (optional)

While not required, for optimal performance it is highly recommended to run the code using a CUDA enabled GPU.

## Install

The easiest way to install it is using pip:

```bash
pip install git+https://github.com/elliottzheng/batch-face.git@master
```
No extra setup needs, most of the pretrained weights will be downloaded automatically.

If you have trouble install from source, you can try install from PyPI:

```bash
pip install batch-face
```
the PyPI version is not guaranteed to be the latest version, but we will try to keep it up to date.

## Usage
You can clone the repo and run tests like this
```
python -m tests.camera
```
### Face Detection

##### Detect face and five landmarks on single image
```python
import cv2
from batch_face import RetinaFace

detector = RetinaFace(gpu_id=0)
img = cv2.imread("examples/obama.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

max_size = 1080 # if the image's max size is larger than 1080, it will be resized to 1080, -1 means no resize
resize = 1 # resize the image to speed up detection, default is 1, no resize
threshold = 0.95 # confidence threshold

# now we recommand to specify return_dict=True to get the result in a more readable way
faces = detector(img, threshold=threshold, resize=resize, max_size=max_size, return_dict=True)
face = faces[0]
box = face['box']
kps = face['kps']
score = face['score']

# the old way to get the result
faces = detector(img, threshold=threshold, resize=resize, max_size=max_size)
box, kps, score = faces[0]

```
##### Running on CPU/GPU

In order to specify the device (GPU or CPU) on which the code will run one can explicitly pass the device id.
```python
from batch_face import RetinaFace
# 0 means using GPU with id 0 for inference
# default -1: means using cpu for inference
fp16 = True # use fp16 to speed up detection and save GPU memory

detector = RetinaFace(gpu_id=0, fp16=True)
```
|      | GPU(GTX 1080TI,batch size=1) | GPU(GTX 1080TI,batch size=750) | CPU(Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz) |
| ---- | ---------------------------- | ------------------------------- | --------------------------------------------- |
| FPS  | 44.02405810720893            | 96.64058005582535               | 15.452635835550483                            |
| SPF  | 0.022714852809906007         | 0.010347620010375976            | 0.0647138786315918                            |


##### Batch input for faster detection

**Detector with CUDA process batch input faster than the same amount of single input.** 

```python
import cv2
from batch_face import RetinaFace

detector = RetinaFace()
img= cv2.imread('examples/obama.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

max_size = 1080 # if the image's max size is larger than 1080, it will be resized to 1080, -1 means no resize
resize = 1 # resize the image to speed up detection, default is 1, no resize
resize_device = 'cpu' # resize on cpu or gpu, default is gpu
threshold = 0.95 # confidence threshold for detection
batch_size = 100 # batch size for detection, the larger the faster but more memory consuming, default is -1, which means batch_size = number of input images
batch_images = [img,img] # pseudo batch input

all_faces = detector(batch_images, threshold=threshold, resize=resize, max_size=max_size, batch_size=batch_size) 
faces = all_faces[0] # the first input image's detection result
box, kps, score = faces[0] # the first face's detection result
```

Note: All the input images must of the same size, for input images with different size, please use `detector.pseudo_batch_detect`.

![](./images/gpu_batch.png)

### Face Alignment
##### face alignment on single image

```python 
from batch_face import drawLandmark_multiple, LandmarkPredictor, RetinaFace

predictor = LandmarkPredictor(0)
detector = RetinaFace(0)

imgname = "examples/obama.jpg"
img = cv2.imread(imgname)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

faces = detector(img)

if len(faces) == 0:
    print("NO face is detected!")
    exit(-1)

# the first input for the predictor is a list of face boxes. [[x1,y1,x2,y2]]
results = predictor(faces, img, from_fd=True) # from_fd=True to convert results from our detection results to simple boxes

for face, landmarks in zip(faces, results):
    img = drawLandmark_multiple(img, face[0], landmarks)
```
### Head Pose Estimation
##### Head pose estimation on video
```python
from batch_face import RetinaFace, SixDRep, draw_landmarks, load_frames_rgb, Timer

vis = True
gpu_id = 0
batch_size = 100
threshold = 0.95
detector = RetinaFace(gpu_id=gpu_id)
head_pose_estimator = SixDRep(gpu_id=gpu_id)
video_file = 'examples/ross.mp4'
frames = load_frames_rgb(video_file) # simple wrapper to load video frames with opencv and convert to RGB, 0~255, UInt8, HWC
print(f'Loaded {len(frames)} frames')
print('image size:', frames[0].shape)
# it might take longer time to detect since is first time to run the model
all_faces = detector(frames, batch_size=batch_size, return_dict=True, threshold=threshold, resize=0.5)
head_poses = head_pose_estimator(all_faces, frames, batch_size=batch_size, update_dict=True, input_face_type='dict')
# the head pose will be updated in the all_faces dict
out_frames = []
for faces, frame in zip(all_faces, frames):
    for face in faces:
        head_pose_estimator.plot_pose_cube(frame, face['box'], **face['head_pose'])
    out_frames.append(frame)

if vis:
    import imageio
    out_file = 'examples/head_pose.mp4'
    imageio.mimsave(out_file, out_frames, fps=8)
```
check out the result video [here](./examples/head_pose.mp4)
you can run the script `python -m tests.video_head_pose` to see the result.


## References

- Face Detection Network and pretrained model are from [biubug6/Pytorch_Retinaface](https://github.com/biubug6/Pytorch_Retinaface)
- Face Alignment Network and pretrained model are from [cunjian/pytorch_face_landmark](https://github.com/cunjian/pytorch_face_landmark)
- Face Reconstruction Network and pretrained model are from [cleardusk/3DDFA](https://github.com/cleardusk/3DDFA)
- Head Pose Estimation Network and pretrained model are from [jahongir7174/SixDRepNet](https://github.com/jahongir7174/SixDRepNet)