Update src/streamlit_app.py
Browse files- src/streamlit_app.py +70 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,72 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
# import altair as alt
|
2 |
+
# import numpy as np
|
3 |
+
# import pandas as pd
|
4 |
+
# import streamlit as st
|
5 |
+
|
6 |
+
# """
|
7 |
+
# # Welcome to Streamlit!
|
8 |
+
|
9 |
+
# Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
+
# If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
+
# forums](https://discuss.streamlit.io).
|
12 |
+
|
13 |
+
# In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
+
# """
|
15 |
+
|
16 |
+
# num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
+
# num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
+
|
19 |
+
# indices = np.linspace(0, 1, num_points)
|
20 |
+
# theta = 2 * np.pi * num_turns * indices
|
21 |
+
# radius = indices
|
22 |
+
|
23 |
+
# x = radius * np.cos(theta)
|
24 |
+
# y = radius * np.sin(theta)
|
25 |
+
|
26 |
+
# df = pd.DataFrame({
|
27 |
+
# "x": x,
|
28 |
+
# "y": y,
|
29 |
+
# "idx": indices,
|
30 |
+
# "rand": np.random.randn(num_points),
|
31 |
+
# })
|
32 |
+
|
33 |
+
# st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
+
# .mark_point(filled=True)
|
35 |
+
# .encode(
|
36 |
+
# x=alt.X("x", axis=None),
|
37 |
+
# y=alt.Y("y", axis=None),
|
38 |
+
# color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
+
# size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
+
# ))
|
41 |
+
|
42 |
+
|
43 |
import streamlit as st
|
44 |
+
import asyncio
|
45 |
+
import nest_asyncio
|
46 |
+
from your_chatbot_module import MCP_ChatBot # Assuming you put your chatbot code in a module
|
47 |
+
|
48 |
+
nest_asyncio.apply()
|
49 |
+
|
50 |
+
@st.cache_resource
|
51 |
+
def get_chatbot_instance():
|
52 |
+
api_key = st.secrets["LLAMA_API_KEY"] # Use Hugging Face Secrets for API key
|
53 |
+
return MCP_ChatBot(api_key=api_key)
|
54 |
+
|
55 |
+
chatbot = get_chatbot_instance()
|
56 |
+
|
57 |
+
st.title("MCP Chatbot on Hugging Face Spaces")
|
58 |
+
|
59 |
+
user_input = st.text_input("Enter your query:")
|
60 |
+
|
61 |
+
if st.button("Send") and user_input:
|
62 |
+
# Run the async chatbot query in the event loop
|
63 |
+
response_steps = asyncio.run(chatbot.connect_and_process(user_input))
|
64 |
+
# Extract final answer from steps
|
65 |
+
final_answer = ""
|
66 |
+
for step in response_steps:
|
67 |
+
if step.get("type") == "final_answer":
|
68 |
+
final_answer = step.get("content")
|
69 |
+
break
|
70 |
+
st.markdown("### Response:")
|
71 |
+
st.write(final_answer)
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|