|
import gradio as gr |
|
import torch |
|
import time |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
model_id = 'kakaocorp/kanana-nano-2.1b-instruct' |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float32, |
|
) |
|
|
|
|
|
def generate_text(prompt): |
|
try: |
|
start_time = time.time() |
|
|
|
messages = [{"role": "user", "content": prompt}] |
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
|
|
eos_token_id = tokenizer.eos_token_id or tokenizer.convert_tokens_to_ids("<|endoftext|>") |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_new_tokens=512, |
|
eos_token_id=eos_token_id, |
|
do_sample=True, |
|
temperature=0.4, |
|
top_p=0.9, |
|
top_k=50, |
|
) |
|
|
|
result = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True) |
|
elapsed = round(time.time() - start_time, 3) |
|
return f"{result}\n\n[응답 시간]: {elapsed}초" |
|
|
|
except Exception as e: |
|
return f"[오류 발생]: {str(e)}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_text, |
|
inputs=gr.Textbox(lines=4, placeholder="프롬프트를 입력하세요...", label="입력"), |
|
outputs=gr.Textbox(label="모델 응답"), |
|
title="kanana-nano-2.1b-instruct 데모", |
|
description="카카오브레인의 경량화 LLM: kakaocorp/kanana-nano-2.1b-instruct 기반 텍스트 생성", |
|
) |
|
|
|
|
|
iface.launch() |
|
|