Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,126 +1,85 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
3 |
import random
|
4 |
import os
|
5 |
-
import
|
6 |
from PIL import Image
|
7 |
from deep_translator import GoogleTranslator
|
8 |
-
from diffusers import DiffusionPipeline
|
9 |
-
from huggingface_hub import hf_hub_download, login
|
10 |
-
|
11 |
-
# Autentikasi Hugging Face
|
12 |
-
HF_TOKEN = os.getenv("HF_READ_TOKEN") # Ganti dengan token Anda atau set env variable
|
13 |
-
login(token=HF_TOKEN)
|
14 |
-
|
15 |
-
# Konfigurasi Model
|
16 |
-
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
17 |
-
LORA_REPO = "burhansyam/uncen"
|
18 |
-
LORA_WEIGHTS_NAME = "uncen.safetensors" # Ganti jika nama file berbeda
|
19 |
-
torch_dtype = torch.float16 # Gunakan float16 untuk kompatibilitas lebih luas
|
20 |
|
21 |
-
#
|
22 |
-
def init_pipeline():
|
23 |
-
# Muat model dasar
|
24 |
-
pipe = DiffusionPipeline.from_pretrained(
|
25 |
-
BASE_MODEL,
|
26 |
-
torch_dtype=torch_dtype,
|
27 |
-
use_auth_token=HF_TOKEN
|
28 |
-
)
|
29 |
-
|
30 |
-
# Muat weights LoRA
|
31 |
-
lora_path = hf_hub_download(
|
32 |
-
repo_id=LORA_REPO,
|
33 |
-
filename=LORA_WEIGHTS_NAME,
|
34 |
-
token=HF_TOKEN
|
35 |
-
)
|
36 |
-
pipe.load_lora_weights(lora_path, adapter_name="uncen")
|
37 |
-
|
38 |
-
# Optimasi GPU jika tersedia
|
39 |
-
if torch.cuda.is_available():
|
40 |
-
pipe.to("cuda")
|
41 |
-
try:
|
42 |
-
pipe.enable_xformers_memory_efficient_attention()
|
43 |
-
except:
|
44 |
-
print("Xformers tidak tersedia, melanjutkan tanpa optimasi")
|
45 |
-
|
46 |
-
return pipe
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
raise gr.Error(f"Gagal memuat model: {str(e)}. Pastikan token akses valid dan Anda memiliki izin.")
|
53 |
|
54 |
def convert_to_png(image):
|
55 |
-
"""
|
56 |
png_buffer = io.BytesIO()
|
57 |
if image.mode == 'RGBA':
|
|
|
58 |
image.save(png_buffer, format='PNG', optimize=True)
|
59 |
else:
|
|
|
60 |
if image.mode != 'RGB':
|
61 |
image = image.convert('RGB')
|
62 |
image.save(png_buffer, format='PNG', optimize=True)
|
63 |
png_buffer.seek(0)
|
64 |
return Image.open(png_buffer)
|
65 |
|
66 |
-
def
|
67 |
-
|
68 |
-
negative_prompt="",
|
69 |
-
steps=35,
|
70 |
-
cfg_scale=7,
|
71 |
-
sampler="DPM++ 2M Karras",
|
72 |
-
seed=-1,
|
73 |
-
width=1024,
|
74 |
-
height=1024
|
75 |
-
):
|
76 |
if not prompt:
|
77 |
return None
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
80 |
try:
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu")
|
88 |
-
if seed == -1:
|
89 |
-
seed = random.randint(1, 1000000000)
|
90 |
-
generator.manual_seed(seed)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
"
|
95 |
-
"
|
96 |
-
"
|
97 |
-
"
|
98 |
-
"
|
99 |
-
"
|
100 |
}
|
101 |
-
|
102 |
try:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
width=width,
|
110 |
-
height=height,
|
111 |
-
generator=generator,
|
112 |
-
cross_attention_kwargs={"scale": 1.0}, # Kontrol kekuatan LoRA
|
113 |
-
**sampler_config[sampler]
|
114 |
-
)
|
115 |
|
116 |
-
|
117 |
-
png_img = convert_to_png(result.images[0])
|
118 |
return png_img
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
except Exception as e:
|
121 |
-
|
|
|
122 |
|
123 |
-
#
|
124 |
css = """
|
125 |
#app-container {
|
126 |
max-width: 800px;
|
@@ -152,7 +111,7 @@ h1 {
|
|
152 |
"""
|
153 |
|
154 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="green"), css=css) as app:
|
155 |
-
gr.HTML("<center><h1>FLUX.1-Dev
|
156 |
|
157 |
with gr.Column(elem_id="app-container"):
|
158 |
with gr.Row():
|
@@ -178,6 +137,7 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="green"), css=css) as app:
|
|
178 |
steps = gr.Slider(35, label="Steps", minimum=10, maximum=100, step=1)
|
179 |
cfg = gr.Slider(7.0, label="CFG Scale", minimum=1.0, maximum=20.0, step=0.5)
|
180 |
with gr.Row():
|
|
|
181 |
seed = gr.Number(-1, label="Seed (-1 for random)")
|
182 |
method = gr.Radio(
|
183 |
["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"],
|
@@ -191,13 +151,13 @@ with gr.Blocks(theme=gr.themes.Default(primary_hue="green"), css=css) as app:
|
|
191 |
output_image = gr.Image(
|
192 |
type="pil",
|
193 |
label="Generated PNG Image",
|
194 |
-
format="png",
|
195 |
elem_id="gallery"
|
196 |
)
|
197 |
|
198 |
generate_btn.click(
|
199 |
-
fn=
|
200 |
-
inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, width, height],
|
201 |
outputs=output_image
|
202 |
)
|
203 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
import random
|
5 |
import os
|
6 |
+
import time
|
7 |
from PIL import Image
|
8 |
from deep_translator import GoogleTranslator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Project by Nymbo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
13 |
+
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
14 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
15 |
+
timeout = 100
|
|
|
16 |
|
17 |
def convert_to_png(image):
|
18 |
+
"""Convert any image format to true PNG format"""
|
19 |
png_buffer = io.BytesIO()
|
20 |
if image.mode == 'RGBA':
|
21 |
+
# If image has alpha channel, save as PNG with transparency
|
22 |
image.save(png_buffer, format='PNG', optimize=True)
|
23 |
else:
|
24 |
+
# Convert to RGB first if not in RGB/RGBA mode
|
25 |
if image.mode != 'RGB':
|
26 |
image = image.convert('RGB')
|
27 |
image.save(png_buffer, format='PNG', optimize=True)
|
28 |
png_buffer.seek(0)
|
29 |
return Image.open(png_buffer)
|
30 |
|
31 |
+
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras",
|
32 |
+
seed=-1, strength=0.7, width=1024, height=1024):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
if not prompt:
|
34 |
return None
|
35 |
|
36 |
+
key = random.randint(0, 999)
|
37 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
38 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
39 |
+
|
40 |
+
# Translate prompt
|
41 |
try:
|
42 |
+
prompt = GoogleTranslator(source='id', target='en').translate(prompt)
|
43 |
+
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
44 |
+
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Translation error: {e}")
|
47 |
|
48 |
+
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
payload = {
|
51 |
+
"inputs": prompt,
|
52 |
+
"is_negative": is_negative,
|
53 |
+
"steps": steps,
|
54 |
+
"cfg_scale": cfg_scale,
|
55 |
+
"seed": seed if seed != -1 else random.randint(1, 1000000000),
|
56 |
+
"strength": strength,
|
57 |
+
"parameters": {"width": width, "height": height}
|
58 |
}
|
59 |
+
|
60 |
try:
|
61 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
62 |
+
response.raise_for_status()
|
63 |
+
|
64 |
+
# Convert directly to PNG without intermediate format
|
65 |
+
img = Image.open(io.BytesIO(response.content))
|
66 |
+
png_img = convert_to_png(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
print(f'\033[1mGeneration {key} completed as PNG!\033[0m')
|
|
|
69 |
return png_img
|
70 |
|
71 |
+
except requests.exceptions.RequestException as e:
|
72 |
+
print(f"API Error: {e}")
|
73 |
+
if hasattr(e, 'response') and e.response:
|
74 |
+
if e.response.status_code == 503:
|
75 |
+
raise gr.Error("503: Model is loading, please try again later")
|
76 |
+
raise gr.Error(f"{e.response.status_code}: {e.response.text}")
|
77 |
+
raise gr.Error("Network error occurred")
|
78 |
except Exception as e:
|
79 |
+
print(f"Image processing error: {e}")
|
80 |
+
raise gr.Error(f"Image processing failed: {str(e)}")
|
81 |
|
82 |
+
# Light theme CSS
|
83 |
css = """
|
84 |
#app-container {
|
85 |
max-width: 800px;
|
|
|
111 |
"""
|
112 |
|
113 |
with gr.Blocks(theme=gr.themes.Default(primary_hue="green"), css=css) as app:
|
114 |
+
gr.HTML("<center><h1>FLUX.1-Dev (PNG Output)</h1></center>")
|
115 |
|
116 |
with gr.Column(elem_id="app-container"):
|
117 |
with gr.Row():
|
|
|
137 |
steps = gr.Slider(35, label="Steps", minimum=10, maximum=100, step=1)
|
138 |
cfg = gr.Slider(7.0, label="CFG Scale", minimum=1.0, maximum=20.0, step=0.5)
|
139 |
with gr.Row():
|
140 |
+
strength = gr.Slider(0.7, label="Strength", minimum=0.1, maximum=1.0, step=0.01)
|
141 |
seed = gr.Number(-1, label="Seed (-1 for random)")
|
142 |
method = gr.Radio(
|
143 |
["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"],
|
|
|
151 |
output_image = gr.Image(
|
152 |
type="pil",
|
153 |
label="Generated PNG Image",
|
154 |
+
format="png", # Explicitly set output format
|
155 |
elem_id="gallery"
|
156 |
)
|
157 |
|
158 |
generate_btn.click(
|
159 |
+
fn=query,
|
160 |
+
inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height],
|
161 |
outputs=output_image
|
162 |
)
|
163 |
|