File size: 10,881 Bytes
19ada00
 
 
865d725
66771c3
9bcd9ad
 
66771c3
9bcd9ad
 
66771c3
19ada00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bcd9ad
 
 
66771c3
 
 
 
774c640
66771c3
 
19ada00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
865d725
9bcd9ad
 
 
19ada00
9bcd9ad
 
19ada00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66771c3
19ada00
66771c3
 
 
 
 
19ada00
9bcd9ad
 
 
 
 
 
19ada00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66771c3
 
19ada00
66771c3
 
19ada00
 
 
 
 
 
9bcd9ad
 
66771c3
19ada00
 
 
 
 
 
66771c3
 
 
9bcd9ad
66771c3
9bcd9ad
 
66771c3
 
 
 
 
 
 
 
 
 
 
9bcd9ad
 
 
 
66771c3
19ada00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca66ea6
66771c3
 
 
 
 
 
 
 
9bcd9ad
66771c3
 
19ada00
66771c3
 
 
 
 
9bcd9ad
19ada00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66771c3
19ada00
 
 
 
 
 
66771c3
865d725
19ada00
66771c3
865d725
 
ca66ea6
865d725
1bdc6e8
865d725
 
66771c3
 
9bcd9ad
 
 
66771c3
19ada00
66771c3
 
19ada00
 
ca66ea6
66771c3
 
 
 
 
 
 
 
 
19ada00
66771c3
 
 
19ada00
66771c3
 
 
 
19ada00
66771c3
 
 
 
19ada00
 
 
 
66771c3
 
 
 
 
 
 
 
 
 
 
 
19ada00
9bcd9ad
1bdc6e8
66771c3
19ada00
 
 
 
 
 
9bcd9ad
19ada00
ca66ea6
66771c3
 
 
 
 
 
 
 
 
19ada00
ca66ea6
19ada00
 
66771c3
 
9bcd9ad
66771c3
ca66ea6
66771c3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# app.py — ZeroGPU-optimised Gradio app (HF Spaces)

import os
import tempfile
from datetime import datetime

import gradio as gr
import pandas as pd
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# ---- ZeroGPU decorator ----
try:
    import spaces  # HF Spaces utility (provides @spaces.GPU())
except Exception:
    # Fallback: make a no-op decorator so the app still runs locally/CPU
    class _Noop:
        def GPU(self, *args, **kwargs):
            def deco(fn):
                return fn
            return deco
    spaces = _Noop()

# ---- Optional quantisation (GPU only) ----
try:
    from transformers import BitsAndBytesConfig
    HAS_BNB = True
except Exception:
    HAS_BNB = False

# ----------------------------
# Config
# ----------------------------

DEFAULT_MODELS = [
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
    "Qwen/Qwen2.5-1.5B-Instruct",
    "neovalle/tinyllama-1.1B-h4rmony-trained",
]

# Keep batches reasonable on ZeroGPU for low latency
MICROBATCH = 4

# Cap encoder length to avoid wasting time on very long inputs
MAX_INPUT_TOKENS = 1024

# Speed on GPU (TF32 gives extra throughput on Ampere+)
if torch.cuda.is_available():
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
else:
    # On CPU, reducing threads sometimes helps stability/predictability
    try:
        torch.set_num_threads(max(1, (os.cpu_count() or 4) // 2))
    except Exception:
        pass

_MODEL_CACHE = {}  # cache: model_id -> (tokenizer, model)


# ----------------------------
# Helpers
# ----------------------------

def _all_eos_ids(tok):
    """Collect a few likely EOS ids so generation can stop earlier."""
    ids = set()
    if tok.eos_token_id is not None:
        ids.add(tok.eos_token_id)
    for t in ("<|im_end|>", "<|endoftext|>", "</s>"):
        try:
            tid = tok.convert_tokens_to_ids(t)
            if isinstance(tid, int) and tid >= 0:
                ids.add(tid)
        except Exception:
            pass
    return list(ids) if ids else None


def _load_model(model_id: str):
    """Load & cache model/tokenizer. On GPU, prefer 4-bit NF4 with BF16 compute."""
    if model_id in _MODEL_CACHE:
        return _MODEL_CACHE[model_id]

    tok = AutoTokenizer.from_pretrained(model_id, use_fast=True)

    # Ensure a pad token for batch generate()
    if tok.pad_token is None:
        if tok.eos_token is not None:
            tok.pad_token = tok.eos_token
        else:
            tok.add_special_tokens({"pad_token": "<|pad|>"})

    use_gpu = torch.cuda.is_available()
    dtype = (
        torch.bfloat16 if (use_gpu and torch.cuda.is_bf16_supported()) else
        (torch.float16 if use_gpu else torch.float32)
    )

    quant_cfg = None
    if use_gpu and HAS_BNB:
        quant_cfg = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16,
        )

    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=(torch.bfloat16 if use_gpu else torch.float32),
        low_cpu_mem_usage=True,
        device_map="auto",
        quantization_config=quant_cfg,  # 4-bit on GPU if available; None on CPU
        trust_remote_code=True,         # helps for chat templates (e.g., Qwen)
        # attn_implementation="flash_attention_2",  # enable only if flash-attn in requirements
    ).eval()

    # Resize if we added new pad token
    if model.get_input_embeddings().num_embeddings != len(tok):
        model.resize_token_embeddings(len(tok))

    # Prefer KV cache
    try:
        model.generation_config.use_cache = True
    except Exception:
        pass

    _MODEL_CACHE[model_id] = (tok, model)
    return tok, model


def _format_prompt(tokenizer, system_prompt: str, user_prompt: str) -> str:
    sys = (system_prompt or "").strip()
    usr = (user_prompt or "").strip()

    if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template:
        messages = []
        if sys:
            messages.append({"role": "system", "content": sys})
        messages.append({"role": "user", "content": usr})
        return tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True,
        )

    prefix = f"<<SYS>>\n{sys}\n<</SYS>>\n\n" if sys else ""
    return f"{prefix}<<USER>>\n{usr}\n<</USER>>\n<<ASSISTANT>>\n"


@torch.inference_mode()
def _generate_microbatch(tok, model, formatted_prompts, gen_kwargs):
    """Generate for a list of formatted prompts. Returns (texts, tokens_out)."""
    device = model.device
    eos_ids = _all_eos_ids(tok)

    enc = tok(
        formatted_prompts,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=MAX_INPUT_TOKENS,
    ).to(device)

    prompt_lens = enc["attention_mask"].sum(dim=1)
    outputs = model.generate(
        **enc,
        eos_token_id=eos_ids,
        pad_token_id=tok.pad_token_id,
        **gen_kwargs,
    )

    texts, toks_out = [], []
    for i in range(outputs.size(0)):
        start = int(prompt_lens[i].item())
        gen_ids = outputs[i, start:]
        texts.append(tok.decode(gen_ids, skip_special_tokens=True).strip())
        toks_out.append(int(gen_ids.numel()))
    return texts, toks_out


def generate_batch_df(
    model_id: str,
    system_prompt: str,
    prompts_multiline: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
    repetition_penalty: float,
) -> pd.DataFrame:
    tok, model = _load_model(model_id)

    # Split user inputs
    prompts = [p.strip() for p in prompts_multiline.splitlines() if p.strip()]
    if not prompts:
        return pd.DataFrame([{"user_prompt": "", "response": "", "tokens_out": 0}])

    formatted = [_format_prompt(tok, system_prompt, p) for p in prompts]

    # Micro-batch multi-line input to keep latency low on ZeroGPU
    B = MICROBATCH if len(formatted) > MICROBATCH else len(formatted)

    # Greedy is fine (and fastest). If temp > 0, enable sampling knobs.
    do_sample = bool(temperature > 0.0)
    gen_kwargs = dict(
        max_new_tokens=int(max_new_tokens),
        do_sample=do_sample,
        temperature=float(temperature) if do_sample else None,
        top_p=float(top_p) if do_sample else None,
        top_k=int(top_k) if (do_sample and int(top_k) > 0) else None,
        repetition_penalty=float(repetition_penalty),
        num_beams=1,
        return_dict_in_generate=False,
        use_cache=True,
    )

    all_texts, all_toks = [], []
    for i in range(0, len(formatted), B):
        batch_prompts = formatted[i : i + B]
        texts, toks = _generate_microbatch(tok, model, batch_prompts, gen_kwargs)
        all_texts.extend(texts)
        all_toks.extend(toks)

    return pd.DataFrame(
        {"user_prompt": prompts, "response": all_texts, "tokens_out": all_toks}
    )


def write_csv_path(df: pd.DataFrame) -> str:
    ts = datetime.utcnow().strftime("%Y%m%d-%H%M%S")
    tmp = tempfile.NamedTemporaryFile(prefix=f"Output_{ts}_", suffix=".csv", delete=False, dir="/tmp")
    df.to_csv(tmp.name, index=False)
    return tmp.name


# ----------------------------
# Gradio UI
# ----------------------------

with gr.Blocks(title="Multi-Prompt Chat (ZeroGPU-optimised)") as demo:
    gr.Markdown(
        """
        # Multi-Prompt Chat to test system prompt effects (ZeroGPU-optimised)
        Pick a small model, set a **system prompt**, and enter **multiple user prompts** (one per line).
        Click **Generate** to get batched responses and a **downloadable CSV**.
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            model_id = gr.Dropdown(
                choices=DEFAULT_MODELS,
                value=DEFAULT_MODELS[0],
                label="Model",
                info="ZeroGPU attaches an H200 dynamically. 4-bit is used automatically on GPU.",
            )
            system_prompt = gr.Textbox(
                label="System prompt",
                placeholder="e.g., You are an ecolinguistics-aware assistant...",
                lines=5,
            )
            prompts_multiline = gr.Textbox(
                label="User prompts (one per line)",
                placeholder="One query per line.\nExample:\nExplain transformers in simple terms\nGive 3 eco-friendly tips\nSummarise benefits of multilingual models",
                lines=10,
            )

            with gr.Accordion("Generation settings", open=False):
                max_new_tokens = gr.Slider(16, 1024, value=200, step=1, label="max_new_tokens")
                temperature = gr.Slider(0.0, 2.0, value=0.0, step=0.05, label="temperature (0 = greedy, fastest)")
                top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="top_p (used if temp > 0)")
                top_k = gr.Slider(0, 200, value=40, step=1, label="top_k (0 disables; used if temp > 0)")
                repetition_penalty = gr.Slider(1.0, 2.0, value=1.1, step=0.01, label="repetition_penalty")

            run_btn = gr.Button("Generate", variant="primary")

        with gr.Column(scale=1):
            out_df = gr.Dataframe(
                headers=["user_prompt", "response", "tokens_out"],
                datatype=["str", "str", "number"],
                label="Results",
                wrap=True,
                interactive=False,
                row_count=(0, "dynamic"),
                type="pandas",
            )
            csv_out = gr.File(label="CSV output", interactive=False, type="filepath")

    # -------- Callback: GPU-decorated for ZeroGPU --------

    @spaces.GPU()  # <— This tells ZeroGPU to attach a GPU for this request
    def _generate_cb(model_id, system_prompt, prompts_multiline,
                     max_new_tokens, temperature, top_p, top_k, repetition_penalty,
                     progress=gr.Progress(track_tqdm=True)):

        progress(0.05, desc="Requesting ZeroGPU…")
        df = generate_batch_df(
            model_id=model_id,
            system_prompt=system_prompt,
            prompts_multiline=prompts_multiline,
            max_new_tokens=int(max_new_tokens),
            temperature=float(temperature),
            top_p=float(top_p),
            top_k=int(top_k),
            repetition_penalty=float(repetition_penalty),
        )
        progress(0.95, desc="Preparing CSV…")
        csv_path = write_csv_path(df)
        progress(1.0, desc="Done")
        return df, csv_path

    run_btn.click(
        _generate_cb,
        inputs=[model_id, system_prompt, prompts_multiline, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[out_df, csv_out],
        api_name="generate_batch",
    )

if __name__ == "__main__":
    demo.launch()