File size: 7,325 Bytes
a72c43d 9f97307 a72c43d 9f97307 a72c43d 9f97307 a72c43d 9f97307 a72c43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import spaces
from kokoro import KModel, KPipeline
import gradio as gr
import os
import random
import torch
print(os.system("""
cd front;
npm ci;
npm run build;
cd ..;
"""))
CHAR_LIMIT = 5000 # test
SPACE_ID = os.environ.get('SPACE_ID')
CUDA_AVAILABLE = torch.cuda.is_available()
models = {gpu: KModel().to('cuda' if gpu else 'cpu').eval() for gpu in [False] + ([True] if CUDA_AVAILABLE else [])}
pipelines = {lang_code: KPipeline(lang_code=lang_code, model=False) for lang_code in 'ab'}
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kΛOkΙΙΉO'
pipelines['b'].g2p.lexicon.golds['kokoro'] = 'kΛQkΙΙΉQ'
gr.set_static_paths(paths=["./front/dist"])
@spaces.GPU(duration=30)
def forward_gpu(ps, ref_s, speed):
return models[True](ps, ref_s, speed)
def generate_first(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Retrying with CPU. To avoid this error, change Hardware to CPU.')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
return (24000, audio.numpy()), ps
return None, ''
# Arena API
def predict(text, voice='af_heart', speed=1):
return generate_first(text, voice, speed, use_gpu=False)[0]
def tokenize_first(text, voice='af_heart'):
pipeline = pipelines[voice[0]]
for _, ps, _ in pipeline(text, voice):
return ps
return ''
def generate_all(text, voice='af_heart', speed=1, use_gpu=CUDA_AVAILABLE):
text = text if CHAR_LIMIT is None else text.strip()[:CHAR_LIMIT]
pipeline = pipelines[voice[0]]
pack = pipeline.load_voice(voice)
use_gpu = use_gpu and CUDA_AVAILABLE
first = True
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
try:
if use_gpu:
audio = forward_gpu(ps, ref_s, speed)
else:
audio = models[False](ps, ref_s, speed)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
audio = models[False](ps, ref_s, speed)
else:
raise gr.Error(e)
yield 24000, audio.numpy()
if first:
first = False
yield 24000, torch.zeros(1).numpy()
CHOICES = {
'πΊπΈ πΊ Heart β€οΈ': 'af_heart',
'πΊπΈ πΊ Bella π₯': 'af_bella',
'πΊπΈ πΊ Nicole π§': 'af_nicole',
'πΊπΈ πΊ Aoede': 'af_aoede',
'πΊπΈ πΊ Kore': 'af_kore',
'πΊπΈ πΊ Sarah': 'af_sarah',
'πΊπΈ πΊ Nova': 'af_nova',
'πΊπΈ πΊ Sky': 'af_sky',
'πΊπΈ πΊ Alloy': 'af_alloy',
'πΊπΈ πΊ Jessica': 'af_jessica',
'πΊπΈ πΊ River': 'af_river',
'πΊπΈ πΉ Michael': 'am_michael',
'πΊπΈ πΉ Fenrir': 'am_fenrir',
'πΊπΈ πΉ Puck': 'am_puck',
'πΊπΈ πΉ Echo': 'am_echo',
'πΊπΈ πΉ Eric': 'am_eric',
'πΊπΈ πΉ Liam': 'am_liam',
'πΊπΈ πΉ Onyx': 'am_onyx',
'πΊπΈ πΉ Santa': 'am_santa',
'πΊπΈ πΉ Adam': 'am_adam',
'π¬π§ πΊ Emma': 'bf_emma',
'π¬π§ πΊ Isabella': 'bf_isabella',
'π¬π§ πΊ Alice': 'bf_alice',
'π¬π§ πΊ Lily': 'bf_lily',
'π¬π§ πΉ George': 'bm_george',
'π¬π§ πΉ Fable': 'bm_fable',
'π¬π§ πΉ Lewis': 'bm_lewis',
'π¬π§ πΉ Daniel': 'bm_daniel',
}
for v in CHOICES.values():
pipelines[v[0]].load_voice(v)
TOKEN_NOTE = '''
π‘ Customize pronunciation with Markdown link syntax and /slashes/ like `[Kokoro](/kΛOkΙΙΉO/)`
π¬ To adjust intonation, try punctuation `;:,.!?ββ¦"()ββ` or stress `Λ` and `Λ`
β¬οΈ Lower stress `[1 level](-1)` or `[2 levels](-2)`
β¬οΈ Raise stress 1 level `[or](+2)` 2 levels (only works on less stressed, usually short words)
'''
with gr.Blocks() as generate_tab:
out_audio = gr.Audio(label='Output Audio', interactive=False, streaming=False, autoplay=True)
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Output Tokens', open=True):
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 context length.')
tokenize_btn = gr.Button('Tokenize', variant='secondary')
gr.Markdown(TOKEN_NOTE)
predict_btn = gr.Button('Predict', variant='secondary', visible=False)
STREAM_NOTE = ['β οΈ There is an unknown Gradio bug that might yield no audio the first time you click `Stream`.']
if CHAR_LIMIT is not None:
STREAM_NOTE.append(f'βοΈ Each stream is capped at {CHAR_LIMIT} characters.')
STREAM_NOTE.append('π Want more characters? You can [use Kokoro directly](https://huggingface.co/hexgrad/Kokoro-82M#usage) or duplicate this space:')
STREAM_NOTE = '\n\n'.join(STREAM_NOTE)
with gr.Blocks() as stream_tab:
out_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
with gr.Row():
stream_btn = gr.Button('Stream', variant='primary')
stop_btn = gr.Button('Stop', variant='stop')
with gr.Accordion('Note', open=True):
gr.Markdown(STREAM_NOTE)
gr.DuplicateButton()
API_NAME = 'tts'
head = f'''
<script>
window.SPACE_ID = '{SPACE_ID}';
if (!localStorage.getItem('debug')) {{
document.querySelector('body').classList = [];
const rootDiv = document.createElement('div');
rootDiv.id = 'root';
document.body.appendChild(rootDiv);
}}
</script>
'''
with open('./front/dist/index.html', 'r') as f:
html = f.read()
lines = html.split('\n')
for i, line in enumerate(lines):
if '<script' in line or 'stylesheet' in line:
head += '\n'.join(lines[:i])
with gr.Blocks(head=head) as app:
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text', info=f"Up to ~500 characters per Generate, or {'β' if CHAR_LIMIT is None else CHAR_LIMIT} characters per Stream")
voice = gr.Dropdown(list(CHOICES.items()), value='af_heart', label='Voice', info='Quality and availability vary by language')
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='Speed')
with gr.Column():
gr.TabbedInterface([generate_tab, stream_tab], ['Generate', 'Stream'])
generate_btn.click(fn=generate_first, inputs=[text, voice, speed], outputs=[out_audio, out_ps], api_name=API_NAME)
tokenize_btn.click(fn=tokenize_first, inputs=[text, voice], outputs=[out_ps], api_name=API_NAME)
stream_event = stream_btn.click(fn=generate_all, inputs=[text, voice, speed], outputs=[out_stream], api_name=API_NAME)
stop_btn.click(fn=None, cancels=stream_event)
predict_btn.click(fn=predict, inputs=[text, voice, speed], outputs=[out_audio], api_name=API_NAME)
if __name__ == '__main__':
app.queue(api_open=True).launch(show_api=True, ssr_mode=True)
|