Spaces:
Sleeping
Sleeping
More improvements
Browse files- .gitignore +2 -1
- app.py +52 -43
- load_dataframe.py +22 -15
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
env/
|
|
|
|
1 |
+
env/
|
2 |
+
*.pyc
|
app.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
import numpy as np
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
|
|
8 |
from load_dataframe import get_data
|
9 |
|
10 |
|
@@ -48,7 +49,34 @@ def aggregated_data(df, aggregation_level="week"):
|
|
48 |
st.pyplot(plt)
|
49 |
|
50 |
|
51 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
df['has_artifact'] = (df['num_models'] > 0) | (df['num_datasets'] > 0) | (df['num_spaces'] > 0)
|
53 |
num_artifacts = df['has_artifact'].sum()
|
54 |
percentage_of_at_least_one_artifact = num_artifacts / df.shape[0] if df.shape[0] > 0 else 0
|
@@ -67,32 +95,13 @@ def display_data(df):
|
|
67 |
""")
|
68 |
|
69 |
st.write("Papers with at least one artifact")
|
70 |
-
|
71 |
-
|
72 |
-
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"),
|
73 |
-
column_config={"github": st.column_config.LinkColumn(),
|
74 |
-
"paper_page": st.column_config.LinkColumn(),
|
75 |
-
"paper_page_with_title": st.column_config.LinkColumn(display_text=r'\|(.*)')},
|
76 |
-
width=2000,
|
77 |
-
key="papers_with_artifacts")
|
78 |
-
|
79 |
st.write("Papers without artifacts")
|
80 |
-
|
81 |
-
hide_index=True,
|
82 |
-
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"),
|
83 |
-
column_config={"github": st.column_config.LinkColumn(),
|
84 |
-
"paper_page": st.column_config.LinkColumn()},
|
85 |
-
width=2000,
|
86 |
-
key="papers_without_artifacts")
|
87 |
|
88 |
st.write("Papers with a HF mention in README but no artifacts")
|
89 |
-
|
90 |
-
hide_index=True,
|
91 |
-
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"),
|
92 |
-
column_config={"github": st.column_config.LinkColumn(),
|
93 |
-
"paper_page": st.column_config.LinkColumn()},
|
94 |
-
width=2000,
|
95 |
-
key="papers_with_hf_mention_no_artifacts")
|
96 |
|
97 |
|
98 |
def main():
|
@@ -102,36 +111,29 @@ def main():
|
|
102 |
st.sidebar.title("Navigation")
|
103 |
selection = st.sidebar.selectbox("Go to", ["Daily/weekly/monthly data", "Aggregated data"])
|
104 |
|
105 |
-
# TODO use this instead
|
106 |
-
df = get_data()
|
107 |
-
|
108 |
-
print(df.head())
|
109 |
-
|
110 |
-
# df = pd.read_csv('daily_papers_enriched (3).csv')
|
111 |
-
df = df.drop(['Unnamed: 0'], axis=1) if 'Unnamed: 0' in df.columns else df
|
112 |
-
# Use date as index
|
113 |
-
# df = df.set_index('date')
|
114 |
-
# df.index = pd.to_datetime(df.index)
|
115 |
-
df = df.sort_index()
|
116 |
-
|
117 |
if selection == "Daily/weekly/monthly data":
|
118 |
# Button to select day, month or week
|
119 |
# Add streamlit selectbox.
|
120 |
view_level = st.selectbox(label="View data per day, week or month", options=["day", "week", "month"])
|
121 |
|
122 |
if view_level == "day":
|
|
|
|
|
|
|
123 |
# make a button to select the day, defaulting to today
|
124 |
day = st.date_input("Select day", value="today", format="DD/MM/YYYY")
|
125 |
# convert to the day of a Pandas Timestamp
|
126 |
day = pd.Timestamp(day)
|
127 |
|
128 |
-
|
129 |
|
130 |
st.write(f"Showing data for {day.day_name()} {day.strftime('%d/%m/%Y')}")
|
131 |
-
|
132 |
-
display_data(df)
|
133 |
|
134 |
elif view_level == "week":
|
|
|
|
|
|
|
135 |
# make a button to select the week
|
136 |
week_number = st.number_input("Select week", value=datetime.today().isocalendar()[1], min_value=1, max_value=52)
|
137 |
|
@@ -139,13 +141,16 @@ def main():
|
|
139 |
df['week'] = df.index.isocalendar().week
|
140 |
|
141 |
# Filter the dataframe for the desired week number
|
142 |
-
|
143 |
|
144 |
st.write(f"Showing data for week {week_number}")
|
145 |
|
146 |
-
display_data(df)
|
147 |
|
148 |
elif view_level == "month":
|
|
|
|
|
|
|
149 |
# make a button to select the month, defaulting to current month
|
150 |
month_str = st.selectbox("Select month", options=["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"])
|
151 |
year_str = st.selectbox("Select year", options=["2024"])
|
@@ -160,13 +165,17 @@ def main():
|
|
160 |
# Convert month string to number
|
161 |
month = month_map[month_str]
|
162 |
year = int(year_str)
|
163 |
-
|
164 |
|
165 |
st.write(f"Showing data for {month_str} {year_str}")
|
166 |
|
167 |
-
display_data(df)
|
168 |
|
169 |
elif selection == "Aggregated data":
|
|
|
|
|
|
|
|
|
170 |
aggregated_data(df)
|
171 |
aggregated_data(df, aggregation_level="month")
|
172 |
|
|
|
5 |
import numpy as np
|
6 |
import matplotlib.pyplot as plt
|
7 |
|
8 |
+
from datasets import Dataset
|
9 |
from load_dataframe import get_data
|
10 |
|
11 |
|
|
|
49 |
st.pyplot(plt)
|
50 |
|
51 |
|
52 |
+
def show_data_editor(df: pd.DataFrame, key: str):
|
53 |
+
edited_df = st.data_editor(df,
|
54 |
+
hide_index=True,
|
55 |
+
column_order=("reached_out", "reached_out_link", "paper_page", "title", "github", "num_models", "num_datasets", "num_spaces"),
|
56 |
+
column_config={"github": st.column_config.LinkColumn(),
|
57 |
+
"paper_page": st.column_config.LinkColumn(),
|
58 |
+
"paper_page_with_title": st.column_config.LinkColumn(display_text=r'\|(.*)')},
|
59 |
+
width=2000,
|
60 |
+
key=key)
|
61 |
+
|
62 |
+
# Check if the dataframe has been edited
|
63 |
+
# TODO this is wrong
|
64 |
+
# rather we should probably do a merge-join (overwriting the edited rows) and then save the new dataframe
|
65 |
+
# if not edited_df.equals(df):
|
66 |
+
# save_data(edited_df)
|
67 |
+
# st.success("Changes saved successfully!")
|
68 |
+
|
69 |
+
|
70 |
+
def save_data(df: pd.DataFrame):
|
71 |
+
# load as HF dataset
|
72 |
+
dataset = Dataset.from_pandas(df)
|
73 |
+
|
74 |
+
dataset.push_to_hub("nielsr/daily-papers-enriched")
|
75 |
+
|
76 |
+
return
|
77 |
+
|
78 |
+
|
79 |
+
def display_data(df: pd.DataFrame):
|
80 |
df['has_artifact'] = (df['num_models'] > 0) | (df['num_datasets'] > 0) | (df['num_spaces'] > 0)
|
81 |
num_artifacts = df['has_artifact'].sum()
|
82 |
percentage_of_at_least_one_artifact = num_artifacts / df.shape[0] if df.shape[0] > 0 else 0
|
|
|
95 |
""")
|
96 |
|
97 |
st.write("Papers with at least one artifact")
|
98 |
+
show_data_editor(df[df['has_artifact']], key="papers_with_artifacts")
|
99 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
st.write("Papers without artifacts")
|
101 |
+
show_data_editor(df[~df['has_artifact']], key="papers_without_artifacts")
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
st.write("Papers with a HF mention in README but no artifacts")
|
104 |
+
show_data_editor(df[(df['hf_mention'] == 1) & (~df['has_artifact'])], key="papers_with_hf_mention_no_artifacts")
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
def main():
|
|
|
111 |
st.sidebar.title("Navigation")
|
112 |
selection = st.sidebar.selectbox("Go to", ["Daily/weekly/monthly data", "Aggregated data"])
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
if selection == "Daily/weekly/monthly data":
|
115 |
# Button to select day, month or week
|
116 |
# Add streamlit selectbox.
|
117 |
view_level = st.selectbox(label="View data per day, week or month", options=["day", "week", "month"])
|
118 |
|
119 |
if view_level == "day":
|
120 |
+
# get the latest dataframe
|
121 |
+
df = get_data()
|
122 |
+
|
123 |
# make a button to select the day, defaulting to today
|
124 |
day = st.date_input("Select day", value="today", format="DD/MM/YYYY")
|
125 |
# convert to the day of a Pandas Timestamp
|
126 |
day = pd.Timestamp(day)
|
127 |
|
128 |
+
filtered_df = df[df.index.date == day.date()]
|
129 |
|
130 |
st.write(f"Showing data for {day.day_name()} {day.strftime('%d/%m/%Y')}")
|
131 |
+
display_data(df=filtered_df)
|
|
|
132 |
|
133 |
elif view_level == "week":
|
134 |
+
# get the latest dataframe
|
135 |
+
df = get_data()
|
136 |
+
|
137 |
# make a button to select the week
|
138 |
week_number = st.number_input("Select week", value=datetime.today().isocalendar()[1], min_value=1, max_value=52)
|
139 |
|
|
|
141 |
df['week'] = df.index.isocalendar().week
|
142 |
|
143 |
# Filter the dataframe for the desired week number
|
144 |
+
filtered_df = df[df['week'] == week_number]
|
145 |
|
146 |
st.write(f"Showing data for week {week_number}")
|
147 |
|
148 |
+
display_data(df=filtered_df)
|
149 |
|
150 |
elif view_level == "month":
|
151 |
+
# get the latest dataframe
|
152 |
+
df = get_data()
|
153 |
+
|
154 |
# make a button to select the month, defaulting to current month
|
155 |
month_str = st.selectbox("Select month", options=["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"])
|
156 |
year_str = st.selectbox("Select year", options=["2024"])
|
|
|
165 |
# Convert month string to number
|
166 |
month = month_map[month_str]
|
167 |
year = int(year_str)
|
168 |
+
filtered_df = df[(df.index.month == month) & (df.index.year == year)]
|
169 |
|
170 |
st.write(f"Showing data for {month_str} {year_str}")
|
171 |
|
172 |
+
display_data(df=filtered_df)
|
173 |
|
174 |
elif selection == "Aggregated data":
|
175 |
+
|
176 |
+
# get the latest dataframe
|
177 |
+
df = get_data()
|
178 |
+
|
179 |
aggregated_data(df)
|
180 |
aggregated_data(df, aggregation_level="month")
|
181 |
|
load_dataframe.py
CHANGED
@@ -20,9 +20,11 @@ class PaperInfo:
|
|
20 |
num_comments: int
|
21 |
|
22 |
|
23 |
-
def get_df(start_date: str, end_date: str) -> pd.DataFrame:
|
24 |
"""
|
25 |
Load the initial dataset as a Pandas dataframe.
|
|
|
|
|
26 |
"""
|
27 |
|
28 |
df = pd.merge(
|
@@ -45,8 +47,9 @@ def get_df(start_date: str, end_date: str) -> pd.DataFrame:
|
|
45 |
# set date as index
|
46 |
df = df.set_index('date')
|
47 |
df.index = pd.to_datetime(df.index)
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
return df
|
52 |
|
@@ -150,8 +153,8 @@ def check_hf_mention(batch):
|
|
150 |
if response.status_code == 200:
|
151 |
# get text
|
152 |
text = response.text
|
153 |
-
|
154 |
-
|
155 |
|
156 |
hf_mentions.append(hf_mention)
|
157 |
|
@@ -179,18 +182,14 @@ def process_data(start_date: str, end_date: str) -> pd.DataFrame:
|
|
179 |
dataset = dataset.map(check_hf_mention, batched=True, batch_size=4, num_proc=cpu_count())
|
180 |
|
181 |
# return as Pandas dataframe
|
|
|
182 |
dataframe = dataset.to_pandas()
|
183 |
-
|
184 |
-
|
185 |
-
dataframe['date'] = pd.to_datetime(dataframe['date'])
|
186 |
-
|
187 |
-
print("First few rows of the dataset:")
|
188 |
-
print(dataframe.head())
|
189 |
|
190 |
return dataframe
|
191 |
|
192 |
|
193 |
-
@st.cache_data
|
194 |
def get_data() -> pd.DataFrame:
|
195 |
|
196 |
# step 1: load pre-processed data
|
@@ -200,14 +199,22 @@ def get_data() -> pd.DataFrame:
|
|
200 |
df.index = pd.to_datetime(df.index)
|
201 |
|
202 |
# step 2: check how much extra data we need to process
|
203 |
-
latest_day = df.iloc[-1].name.strftime('%
|
204 |
-
today = pd.Timestamp.today().strftime('%
|
|
|
|
|
|
|
205 |
|
206 |
# step 3: process the missing data
|
207 |
if latest_day < today:
|
208 |
print(f"Processing data from {latest_day} to {today}")
|
209 |
new_df = process_data(start_date=latest_day, end_date=today)
|
210 |
-
|
|
|
|
|
|
|
211 |
df = pd.concat([df, new_df])
|
212 |
|
|
|
|
|
213 |
return df
|
|
|
20 |
num_comments: int
|
21 |
|
22 |
|
23 |
+
def get_df(start_date: str = None, end_date: str = None) -> pd.DataFrame:
|
24 |
"""
|
25 |
Load the initial dataset as a Pandas dataframe.
|
26 |
+
|
27 |
+
One can optionally specify a start_date and end_date to only include data between these dates.
|
28 |
"""
|
29 |
|
30 |
df = pd.merge(
|
|
|
47 |
# set date as index
|
48 |
df = df.set_index('date')
|
49 |
df.index = pd.to_datetime(df.index)
|
50 |
+
if start_date is not None and end_date is not None:
|
51 |
+
# only include data between start_date and end_date
|
52 |
+
df = df[(df.index >= start_date) & (df.index <= end_date)]
|
53 |
|
54 |
return df
|
55 |
|
|
|
153 |
if response.status_code == 200:
|
154 |
# get text
|
155 |
text = response.text
|
156 |
+
if "huggingface" in text.lower() or "hugging face" in text.lower():
|
157 |
+
hf_mention = 1
|
158 |
|
159 |
hf_mentions.append(hf_mention)
|
160 |
|
|
|
182 |
dataset = dataset.map(check_hf_mention, batched=True, batch_size=4, num_proc=cpu_count())
|
183 |
|
184 |
# return as Pandas dataframe
|
185 |
+
# making sure that the date is set as index
|
186 |
dataframe = dataset.to_pandas()
|
187 |
+
dataframe = dataframe.set_index('date')
|
188 |
+
dataframe.index = pd.to_datetime(dataframe.index)
|
|
|
|
|
|
|
|
|
189 |
|
190 |
return dataframe
|
191 |
|
192 |
|
|
|
193 |
def get_data() -> pd.DataFrame:
|
194 |
|
195 |
# step 1: load pre-processed data
|
|
|
199 |
df.index = pd.to_datetime(df.index)
|
200 |
|
201 |
# step 2: check how much extra data we need to process
|
202 |
+
latest_day = df.iloc[-1].name.strftime('%Y-%m-%d')
|
203 |
+
today = pd.Timestamp.today().strftime('%Y-%m-%d')
|
204 |
+
|
205 |
+
print("Latest day:", latest_day)
|
206 |
+
print("Today:", today)
|
207 |
|
208 |
# step 3: process the missing data
|
209 |
if latest_day < today:
|
210 |
print(f"Processing data from {latest_day} to {today}")
|
211 |
new_df = process_data(start_date=latest_day, end_date=today)
|
212 |
+
|
213 |
+
print("Original df:", df.head())
|
214 |
+
print("New df:", new_df.head())
|
215 |
+
|
216 |
df = pd.concat([df, new_df])
|
217 |
|
218 |
+
df = df.sort_index()
|
219 |
+
|
220 |
return df
|