Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
# ----------------------------------------------------------------------------
|
| 2 |
# Import necessary libraries
|
| 3 |
# ----------------------------------------------------------------------------
|
|
@@ -25,6 +27,7 @@ plt.switch_backend('Agg')
|
|
| 25 |
# We use a small, efficient model to ensure the app runs smoothly.
|
| 26 |
try:
|
| 27 |
explanation_generator = pipeline('text2text-generation', model='google/flan-t5-small')
|
|
|
|
| 28 |
except Exception as e:
|
| 29 |
print(f"Could not load Hugging Face model. Explanations will be disabled. Error: {e}")
|
| 30 |
explanation_generator = None
|
|
@@ -42,6 +45,15 @@ sample_project_costs.to_csv(SAMPLE_CSV_PATH, index=False)
|
|
| 42 |
# Core Logic Functions
|
| 43 |
# ----------------------------------------------------------------------------
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
| 46 |
"""
|
| 47 |
Processes the user's input from the UI.
|
|
@@ -71,21 +83,18 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
| 71 |
source_info = f"from uploaded file: {os.path.basename(file_obj.name)}"
|
| 72 |
data = df
|
| 73 |
except Exception as e:
|
| 74 |
-
return None,
|
| 75 |
-
elif example_choice == "Project Cost Estimation":
|
| 76 |
df = pd.read_csv(SAMPLE_CSV_PATH)
|
| 77 |
source_info = "from the 'Project Cost Estimation' example"
|
| 78 |
data = df
|
| 79 |
elif manual_mean is not None and manual_std is not None:
|
| 80 |
-
# If manual input, we don't have raw data, just parameters.
|
| 81 |
-
# We'll return these params to be used directly in the simulation.
|
| 82 |
if manual_std <= 0:
|
| 83 |
-
return None,
|
| 84 |
|
| 85 |
stats_text = (f"Source: Manual Input\n"
|
| 86 |
f"Mean: {manual_mean:.2f}\n"
|
| 87 |
f"Standard Deviation: {manual_std:.2f}")
|
| 88 |
-
# Create a dummy plot for manual input
|
| 89 |
fig, ax = plt.subplots()
|
| 90 |
ax.text(0.5, 0.5, 'Manual input:\nNo data to plot.\nSimulation will use\nthe provided Mean/Std.',
|
| 91 |
ha='center', va='center', fontsize=12)
|
|
@@ -93,19 +102,18 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
| 93 |
ax.set_yticks([])
|
| 94 |
plt.tight_layout()
|
| 95 |
|
| 96 |
-
# Use a special DataFrame to signal manual input downstream
|
| 97 |
manual_df = pd.DataFrame({'mean': [manual_mean], 'std': [manual_std]})
|
| 98 |
return manual_df, fig, stats_text, "Manual parameters accepted. Ready to run simulation."
|
| 99 |
|
| 100 |
if data is None:
|
| 101 |
-
return None,
|
| 102 |
|
| 103 |
# 2. Validate data structure
|
| 104 |
if data.shape[1] != 1 or not pd.api.types.is_numeric_dtype(data.iloc[:, 0]):
|
| 105 |
error_msg = (f"Data Error: The data {source_info} is not compatible. "
|
| 106 |
"The app requires a CSV with a single column of numerical data. "
|
| 107 |
f"Detected {data.shape[1]} columns.")
|
| 108 |
-
return None,
|
| 109 |
|
| 110 |
# 3. Process valid data
|
| 111 |
series = data.iloc[:, 0].dropna()
|
|
@@ -113,13 +121,13 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
| 113 |
std = series.std()
|
| 114 |
|
| 115 |
if std == 0:
|
| 116 |
-
|
|
|
|
| 117 |
|
| 118 |
# 4. Generate visualization and stats
|
| 119 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 120 |
ax.hist(series, bins='auto', density=True, alpha=0.7, label='Input Data Distribution')
|
| 121 |
|
| 122 |
-
# Overlay a normal distribution curve
|
| 123 |
xmin, xmax = plt.xlim()
|
| 124 |
x = np.linspace(xmin, xmax, 100)
|
| 125 |
p = norm.pdf(x, mean, std)
|
|
@@ -147,49 +155,34 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
| 147 |
def run_monte_carlo_simulation(data, num_simulations, target_value):
|
| 148 |
"""
|
| 149 |
Performs the Monte Carlo simulation based on the processed data.
|
| 150 |
-
|
| 151 |
-
Args:
|
| 152 |
-
data (pd.DataFrame): The validated input data.
|
| 153 |
-
num_simulations (int): The number of simulation iterations to run.
|
| 154 |
-
target_value (float): A user-defined target to calculate probability against.
|
| 155 |
-
|
| 156 |
-
Returns:
|
| 157 |
-
tuple: A tuple containing:
|
| 158 |
-
- A Matplotlib figure of the simulation results histogram.
|
| 159 |
-
- A Matplotlib figure of the cumulative distribution (CDF).
|
| 160 |
-
- A string containing detailed numerical results.
|
| 161 |
"""
|
|
|
|
| 162 |
if data is None:
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
|
| 165 |
num_simulations = int(num_simulations)
|
| 166 |
|
| 167 |
-
# Check if data is from manual input or from a file/example
|
| 168 |
if 'mean' in data.columns and 'std' in data.columns and data.shape[0] == 1:
|
| 169 |
mean = data['mean'].iloc[0]
|
| 170 |
std = data['std'].iloc[0]
|
| 171 |
-
data_name = "Value"
|
| 172 |
else:
|
| 173 |
series = data.iloc[:, 0]
|
| 174 |
mean = series.mean()
|
| 175 |
std = series.std()
|
| 176 |
data_name = series.name
|
| 177 |
|
| 178 |
-
# The core of the Monte Carlo simulation: generate random samples
|
| 179 |
-
# We assume the underlying uncertainty follows a Normal Distribution
|
| 180 |
-
# defined by the mean and standard deviation of the input data.
|
| 181 |
simulation_results = np.random.normal(mean, std, num_simulations)
|
| 182 |
|
| 183 |
-
# --- Generate Results Histogram Plot ---
|
| 184 |
fig_hist, ax_hist = plt.subplots(figsize=(8, 5))
|
| 185 |
ax_hist.hist(simulation_results, bins=50, density=True, alpha=0.8, color='skyblue', edgecolor='black')
|
| 186 |
|
| 187 |
-
# Calculate key statistics for plotting
|
| 188 |
sim_mean = np.mean(simulation_results)
|
| 189 |
p5 = np.percentile(simulation_results, 5)
|
| 190 |
p95 = np.percentile(simulation_results, 95)
|
| 191 |
|
| 192 |
-
# Add vertical lines for key statistics
|
| 193 |
ax_hist.axvline(sim_mean, color='red', linestyle='--', linewidth=2, label=f'Mean: {sim_mean:.2f}')
|
| 194 |
ax_hist.axvline(p5, color='green', linestyle=':', linewidth=2, label=f'5th Percentile (P5): {p5:.2f}')
|
| 195 |
ax_hist.axvline(p95, color='green', linestyle=':', linewidth=2, label=f'95th Percentile (P95): {p95:.2f}')
|
|
@@ -201,13 +194,11 @@ def run_monte_carlo_simulation(data, num_simulations, target_value):
|
|
| 201 |
ax_hist.grid(True, linestyle='--', alpha=0.6)
|
| 202 |
plt.tight_layout()
|
| 203 |
|
| 204 |
-
# --- Generate Cumulative Distribution (CDF) Plot ---
|
| 205 |
fig_cdf, ax_cdf = plt.subplots(figsize=(8, 5))
|
| 206 |
sorted_results = np.sort(simulation_results)
|
| 207 |
yvals = np.arange(len(sorted_results)) / float(len(sorted_results) - 1)
|
| 208 |
ax_cdf.plot(sorted_results, yvals, label='CDF')
|
| 209 |
|
| 210 |
-
# Add markers for P5, P50, P95
|
| 211 |
p50 = np.percentile(simulation_results, 50)
|
| 212 |
ax_cdf.plot(p5, 0.05, 'go', ms=8, label=f'P5: {p5:.2f}')
|
| 213 |
ax_cdf.plot(p50, 0.50, 'ro', ms=8, label=f'Median (P50): {p50:.2f}')
|
|
@@ -220,7 +211,6 @@ def run_monte_carlo_simulation(data, num_simulations, target_value):
|
|
| 220 |
ax_cdf.legend()
|
| 221 |
plt.tight_layout()
|
| 222 |
|
| 223 |
-
# --- Calculate Final Numerical Results ---
|
| 224 |
prob_achieved = 0
|
| 225 |
if target_value is not None:
|
| 226 |
prob_achieved = np.sum(simulation_results <= target_value) / num_simulations * 100
|
|
@@ -248,17 +238,12 @@ def run_monte_carlo_simulation(data, num_simulations, target_value):
|
|
| 248 |
def generate_explanation(results_summary):
|
| 249 |
"""
|
| 250 |
Uses a Hugging Face model to explain the simulation results in simple terms.
|
| 251 |
-
|
| 252 |
-
Args:
|
| 253 |
-
results_summary (str): The numerical summary from the simulation.
|
| 254 |
-
|
| 255 |
-
Returns:
|
| 256 |
-
str: A generated explanation of the results.
|
| 257 |
"""
|
| 258 |
if explanation_generator is None:
|
| 259 |
return "LLM model not loaded. Cannot generate explanation."
|
| 260 |
-
|
| 261 |
-
|
|
|
|
| 262 |
|
| 263 |
prompt = f"""
|
| 264 |
Explain the following Monte Carlo simulation results to a non-technical manager.
|
|
@@ -297,9 +282,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
| 297 |
|
| 298 |
# --- Row 1: Data Input and Preparation ---
|
| 299 |
with gr.Row():
|
| 300 |
-
# --- Column 1.1: Data Collection ---
|
| 301 |
with gr.Column(scale=1):
|
| 302 |
-
with gr.
|
| 303 |
gr.Markdown("### 1. Data Collection")
|
| 304 |
gr.Markdown("Choose **one** method below.")
|
| 305 |
|
|
@@ -317,9 +301,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
| 317 |
|
| 318 |
prepare_button = gr.Button("Prepare Simulation", variant="secondary")
|
| 319 |
|
| 320 |
-
# --- Column 1.2: Preparation Plots & Visualization ---
|
| 321 |
with gr.Column(scale=2):
|
| 322 |
-
with gr.
|
| 323 |
gr.Markdown("### 2. Preparation & Visualization")
|
| 324 |
validation_output = gr.Textbox(label="Validation Status", interactive=False, lines=3)
|
| 325 |
input_stats_output = gr.Textbox(label="Input Data Statistics", interactive=False, lines=6)
|
|
@@ -327,7 +310,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
| 327 |
|
| 328 |
# --- Row 2: Simulation Controls and Results ---
|
| 329 |
with gr.Row():
|
| 330 |
-
with gr.
|
| 331 |
gr.Markdown("### 3. Simulation Run & Results")
|
| 332 |
with gr.Row():
|
| 333 |
with gr.Column(scale=1, min_width=250):
|
|
@@ -353,7 +336,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
| 353 |
|
| 354 |
# --- Row 3: AI-Powered Explanation ---
|
| 355 |
with gr.Row():
|
| 356 |
-
with gr.
|
| 357 |
gr.Markdown("### 4. AI-Powered Explanation")
|
| 358 |
explain_button = gr.Button("Explain the Takeaways", variant="secondary")
|
| 359 |
explanation_output = gr.Textbox(
|
|
@@ -367,7 +350,6 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
| 367 |
# Define UI Component Interactions
|
| 368 |
# ----------------------------------------------------------------------------
|
| 369 |
|
| 370 |
-
# Hidden state to store the processed data between steps
|
| 371 |
processed_data_state = gr.State()
|
| 372 |
|
| 373 |
prepare_button.click(
|
|
@@ -392,6 +374,4 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
| 392 |
# Launch the Gradio App
|
| 393 |
# ----------------------------------------------------------------------------
|
| 394 |
if __name__ == "__main__":
|
| 395 |
-
# To run this app, save the code as a Python file (e.g., main.py)
|
| 396 |
-
# and run `python main.py` from your terminal.
|
| 397 |
app.launch(debug=True)
|
|
|
|
| 1 |
+
# main.py
|
| 2 |
+
|
| 3 |
# ----------------------------------------------------------------------------
|
| 4 |
# Import necessary libraries
|
| 5 |
# ----------------------------------------------------------------------------
|
|
|
|
| 27 |
# We use a small, efficient model to ensure the app runs smoothly.
|
| 28 |
try:
|
| 29 |
explanation_generator = pipeline('text2text-generation', model='google/flan-t5-small')
|
| 30 |
+
print("Hugging Face model loaded successfully.")
|
| 31 |
except Exception as e:
|
| 32 |
print(f"Could not load Hugging Face model. Explanations will be disabled. Error: {e}")
|
| 33 |
explanation_generator = None
|
|
|
|
| 45 |
# Core Logic Functions
|
| 46 |
# ----------------------------------------------------------------------------
|
| 47 |
|
| 48 |
+
def create_error_plot(message):
|
| 49 |
+
"""Creates a matplotlib plot with a specified error message."""
|
| 50 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
| 51 |
+
ax.text(0.5, 0.5, message, ha='center', va='center', wrap=True, color='red', fontsize=12)
|
| 52 |
+
ax.set_xticks([])
|
| 53 |
+
ax.set_yticks([])
|
| 54 |
+
plt.tight_layout()
|
| 55 |
+
return fig
|
| 56 |
+
|
| 57 |
def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
| 58 |
"""
|
| 59 |
Processes the user's input from the UI.
|
|
|
|
| 83 |
source_info = f"from uploaded file: {os.path.basename(file_obj.name)}"
|
| 84 |
data = df
|
| 85 |
except Exception as e:
|
| 86 |
+
return None, create_error_plot(f"Error reading file: {e}"), None, f"Error reading file: {e}. Please ensure it's a valid CSV."
|
| 87 |
+
elif example_choice and example_choice == "Project Cost Estimation":
|
| 88 |
df = pd.read_csv(SAMPLE_CSV_PATH)
|
| 89 |
source_info = "from the 'Project Cost Estimation' example"
|
| 90 |
data = df
|
| 91 |
elif manual_mean is not None and manual_std is not None:
|
|
|
|
|
|
|
| 92 |
if manual_std <= 0:
|
| 93 |
+
return None, create_error_plot("Standard Deviation must be positive."), None, "Manual Input Error: Standard Deviation must be positive."
|
| 94 |
|
| 95 |
stats_text = (f"Source: Manual Input\n"
|
| 96 |
f"Mean: {manual_mean:.2f}\n"
|
| 97 |
f"Standard Deviation: {manual_std:.2f}")
|
|
|
|
| 98 |
fig, ax = plt.subplots()
|
| 99 |
ax.text(0.5, 0.5, 'Manual input:\nNo data to plot.\nSimulation will use\nthe provided Mean/Std.',
|
| 100 |
ha='center', va='center', fontsize=12)
|
|
|
|
| 102 |
ax.set_yticks([])
|
| 103 |
plt.tight_layout()
|
| 104 |
|
|
|
|
| 105 |
manual_df = pd.DataFrame({'mean': [manual_mean], 'std': [manual_std]})
|
| 106 |
return manual_df, fig, stats_text, "Manual parameters accepted. Ready to run simulation."
|
| 107 |
|
| 108 |
if data is None:
|
| 109 |
+
return None, create_error_plot("No data source provided."), None, "No data source provided. Please upload a file, choose an example, or enter parameters."
|
| 110 |
|
| 111 |
# 2. Validate data structure
|
| 112 |
if data.shape[1] != 1 or not pd.api.types.is_numeric_dtype(data.iloc[:, 0]):
|
| 113 |
error_msg = (f"Data Error: The data {source_info} is not compatible. "
|
| 114 |
"The app requires a CSV with a single column of numerical data. "
|
| 115 |
f"Detected {data.shape[1]} columns.")
|
| 116 |
+
return None, create_error_plot(error_msg), None, error_msg
|
| 117 |
|
| 118 |
# 3. Process valid data
|
| 119 |
series = data.iloc[:, 0].dropna()
|
|
|
|
| 121 |
std = series.std()
|
| 122 |
|
| 123 |
if std == 0:
|
| 124 |
+
error_msg = "Data Error: All values are the same. Standard deviation is zero, cannot simulate uncertainty."
|
| 125 |
+
return None, create_error_plot(error_msg), None, error_msg
|
| 126 |
|
| 127 |
# 4. Generate visualization and stats
|
| 128 |
fig, ax = plt.subplots(figsize=(6, 4))
|
| 129 |
ax.hist(series, bins='auto', density=True, alpha=0.7, label='Input Data Distribution')
|
| 130 |
|
|
|
|
| 131 |
xmin, xmax = plt.xlim()
|
| 132 |
x = np.linspace(xmin, xmax, 100)
|
| 133 |
p = norm.pdf(x, mean, std)
|
|
|
|
| 155 |
def run_monte_carlo_simulation(data, num_simulations, target_value):
|
| 156 |
"""
|
| 157 |
Performs the Monte Carlo simulation based on the processed data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
"""
|
| 159 |
+
# **NEW**: Check for valid data at the beginning and return clear error plots if invalid.
|
| 160 |
if data is None:
|
| 161 |
+
error_message = "ERROR: No valid data available.\nPlease go to Step 1 & 2 and click 'Prepare Simulation' first."
|
| 162 |
+
error_plot = create_error_plot(error_message)
|
| 163 |
+
return error_plot, error_plot, "Simulation failed. See plot for details."
|
| 164 |
|
| 165 |
num_simulations = int(num_simulations)
|
| 166 |
|
|
|
|
| 167 |
if 'mean' in data.columns and 'std' in data.columns and data.shape[0] == 1:
|
| 168 |
mean = data['mean'].iloc[0]
|
| 169 |
std = data['std'].iloc[0]
|
| 170 |
+
data_name = "Value"
|
| 171 |
else:
|
| 172 |
series = data.iloc[:, 0]
|
| 173 |
mean = series.mean()
|
| 174 |
std = series.std()
|
| 175 |
data_name = series.name
|
| 176 |
|
|
|
|
|
|
|
|
|
|
| 177 |
simulation_results = np.random.normal(mean, std, num_simulations)
|
| 178 |
|
|
|
|
| 179 |
fig_hist, ax_hist = plt.subplots(figsize=(8, 5))
|
| 180 |
ax_hist.hist(simulation_results, bins=50, density=True, alpha=0.8, color='skyblue', edgecolor='black')
|
| 181 |
|
|
|
|
| 182 |
sim_mean = np.mean(simulation_results)
|
| 183 |
p5 = np.percentile(simulation_results, 5)
|
| 184 |
p95 = np.percentile(simulation_results, 95)
|
| 185 |
|
|
|
|
| 186 |
ax_hist.axvline(sim_mean, color='red', linestyle='--', linewidth=2, label=f'Mean: {sim_mean:.2f}')
|
| 187 |
ax_hist.axvline(p5, color='green', linestyle=':', linewidth=2, label=f'5th Percentile (P5): {p5:.2f}')
|
| 188 |
ax_hist.axvline(p95, color='green', linestyle=':', linewidth=2, label=f'95th Percentile (P95): {p95:.2f}')
|
|
|
|
| 194 |
ax_hist.grid(True, linestyle='--', alpha=0.6)
|
| 195 |
plt.tight_layout()
|
| 196 |
|
|
|
|
| 197 |
fig_cdf, ax_cdf = plt.subplots(figsize=(8, 5))
|
| 198 |
sorted_results = np.sort(simulation_results)
|
| 199 |
yvals = np.arange(len(sorted_results)) / float(len(sorted_results) - 1)
|
| 200 |
ax_cdf.plot(sorted_results, yvals, label='CDF')
|
| 201 |
|
|
|
|
| 202 |
p50 = np.percentile(simulation_results, 50)
|
| 203 |
ax_cdf.plot(p5, 0.05, 'go', ms=8, label=f'P5: {p5:.2f}')
|
| 204 |
ax_cdf.plot(p50, 0.50, 'ro', ms=8, label=f'Median (P50): {p50:.2f}')
|
|
|
|
| 211 |
ax_cdf.legend()
|
| 212 |
plt.tight_layout()
|
| 213 |
|
|
|
|
| 214 |
prob_achieved = 0
|
| 215 |
if target_value is not None:
|
| 216 |
prob_achieved = np.sum(simulation_results <= target_value) / num_simulations * 100
|
|
|
|
| 238 |
def generate_explanation(results_summary):
|
| 239 |
"""
|
| 240 |
Uses a Hugging Face model to explain the simulation results in simple terms.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
"""
|
| 242 |
if explanation_generator is None:
|
| 243 |
return "LLM model not loaded. Cannot generate explanation."
|
| 244 |
+
# **NEW**: More robust check for failed simulation runs.
|
| 245 |
+
if not results_summary or "Please process valid data" in results_summary or "Simulation failed" in results_summary:
|
| 246 |
+
return "Could not generate explanation. Please run a successful simulation first."
|
| 247 |
|
| 248 |
prompt = f"""
|
| 249 |
Explain the following Monte Carlo simulation results to a non-technical manager.
|
|
|
|
| 282 |
|
| 283 |
# --- Row 1: Data Input and Preparation ---
|
| 284 |
with gr.Row():
|
|
|
|
| 285 |
with gr.Column(scale=1):
|
| 286 |
+
with gr.Group():
|
| 287 |
gr.Markdown("### 1. Data Collection")
|
| 288 |
gr.Markdown("Choose **one** method below.")
|
| 289 |
|
|
|
|
| 301 |
|
| 302 |
prepare_button = gr.Button("Prepare Simulation", variant="secondary")
|
| 303 |
|
|
|
|
| 304 |
with gr.Column(scale=2):
|
| 305 |
+
with gr.Group():
|
| 306 |
gr.Markdown("### 2. Preparation & Visualization")
|
| 307 |
validation_output = gr.Textbox(label="Validation Status", interactive=False, lines=3)
|
| 308 |
input_stats_output = gr.Textbox(label="Input Data Statistics", interactive=False, lines=6)
|
|
|
|
| 310 |
|
| 311 |
# --- Row 2: Simulation Controls and Results ---
|
| 312 |
with gr.Row():
|
| 313 |
+
with gr.Group():
|
| 314 |
gr.Markdown("### 3. Simulation Run & Results")
|
| 315 |
with gr.Row():
|
| 316 |
with gr.Column(scale=1, min_width=250):
|
|
|
|
| 336 |
|
| 337 |
# --- Row 3: AI-Powered Explanation ---
|
| 338 |
with gr.Row():
|
| 339 |
+
with gr.Group():
|
| 340 |
gr.Markdown("### 4. AI-Powered Explanation")
|
| 341 |
explain_button = gr.Button("Explain the Takeaways", variant="secondary")
|
| 342 |
explanation_output = gr.Textbox(
|
|
|
|
| 350 |
# Define UI Component Interactions
|
| 351 |
# ----------------------------------------------------------------------------
|
| 352 |
|
|
|
|
| 353 |
processed_data_state = gr.State()
|
| 354 |
|
| 355 |
prepare_button.click(
|
|
|
|
| 374 |
# Launch the Gradio App
|
| 375 |
# ----------------------------------------------------------------------------
|
| 376 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 377 |
app.launch(debug=True)
|