clone / app.py
nikkmitra's picture
Update app.py
1d877e3 verified
raw
history blame
5.33 kB
import gradio as gr
import torch
from TTS.api import TTS
import os
import spaces
import tempfile
from pymongo import MongoClient
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer
# Load environment variables
load_dotenv()
# Get MongoDB URI and Hugging Face token from .env file
mongodb_uri = os.getenv('MONGODB_URI')
hf_token = os.getenv('HF_TOKEN')
# Connect to MongoDB
client = MongoClient(mongodb_uri)
db = client['mitra']
voices_collection = db['voices']
os.environ["COQUI_TOS_AGREED"] = "1"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize TTS model
def load_tts_model():
return TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
tts = load_tts_model()
# Fetch celebrity voices from MongoDB
def get_celebrity_voices():
voices = {}
for category in voices_collection.find():
for voice in category['voices']:
voices[voice['name']] = f"voices/{voice['name']}.mp3"
return voices
celebrity_voices = get_celebrity_voices()
def check_voice_files():
"""
Checks if all voice files exist in the Hugging Face repository.
Returns a message listing missing files or confirming all files are present.
"""
missing = []
for voice, path in celebrity_voices.items():
try:
hf_hub_download(repo_id="nikkmitra/clone", filename=path, repo_type="space", token=hf_token)
except Exception:
missing.append(f"{voice}: {path}")
if missing:
return "**Missing Voice Files:**\n" + "\n".join(missing)
else:
return "**All voice files are present.** 🎉"
# New function to split text into chunks of 100 tokens using the Hindi tokenizer
def split_text_into_chunks(text, max_tokens=100, language="en"):
"""
Splits the input text into chunks with a maximum of `max_tokens` tokens each.
Inserts a newline after each chunk.
Uses a specialized tokenizer for Hindi language.
"""
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk = ' '.join(tokens[i:i + max_tokens])
chunks.append(chunk)
return '\n'.join(chunks)
@spaces.GPU(duration=120)
def tts_generate(text, voice, language):
# Check for Hindi language and split text if necessary
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio_path = temp_audio.name
try:
voice_file = hf_hub_download(repo_id="nikkmitra/clone", filename=celebrity_voices[voice], repo_type="space", token=hf_token)
except Exception as e:
return f"Error downloading voice file: {e}"
try:
tts.tts_to_file(
text=text,
speaker_wav=voice_file,
language=language,
file_path=temp_audio_path
)
except AssertionError as ae:
return f"Error: {ae}"
except Exception as e:
return f"An unexpected error occurred: {e}"
return temp_audio_path
@spaces.GPU(duration=120)
def clone_voice(text, audio_file, language):
print("cloning")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio_path = temp_audio.name
try:
tts.tts_to_file(
text=text,
speaker_wav=audio_file,
language=language,
file_path=temp_audio_path
)
except AssertionError as ae:
return f"Error: {ae}"
except Exception as e:
return f"An unexpected error occurred: {e}"
return temp_audio_path
# Define Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Advanced Voice Synthesis")
# Display voice files status
voice_status = check_voice_files()
gr.Markdown(voice_status)
with gr.Tabs():
with gr.TabItem("TTS"):
with gr.Row():
tts_text = gr.Textbox(label="Text to speak")
tts_voice = gr.Dropdown(choices=list(celebrity_voices.keys()), label="Celebrity Voice")
tts_language = gr.Dropdown(["en", "es", "fr", "de", "it", "ar","hi"], label="Language", value="en")
tts_generate_btn = gr.Button("Generate")
tts_output = gr.Audio(label="Generated Audio")
tts_generate_btn.click(
tts_generate,
inputs=[tts_text, tts_voice, tts_language],
outputs=tts_output
)
with gr.TabItem("Clone Voice"):
with gr.Row():
clone_text = gr.Textbox(label="Text to speak")
clone_audio = gr.Audio(label="Voice reference audio file", type="filepath")
clone_language = gr.Dropdown(["en", "es", "fr", "de", "it", "ar", "hi"], label="Language", value="en")
clone_generate_btn = gr.Button("Generate")
clone_output = gr.Audio(label="Generated Audio")
clone_generate_btn.click(
clone_voice,
inputs=[clone_text, clone_audio, clone_language],
outputs=clone_output
)
# Launch the interface
demo.launch()
# Clean up temporary files (this will run after the Gradio server is closed)
for file in os.listdir():
if file.endswith('.wav') and file.startswith('tmp'):
os.remove(file)