# Import necessary libraries import numpy as np import joblib # For loading the serialized model import pandas as pd # For data manipulation from flask import Flask, request, jsonify # For creating the Flask API # Initialize the Flask application forecast_predictor_api = Flask("Forecast Predictor") # Load the trained machine learning model model = joblib.load("SuperKartbest_xgb.joblib") @forecast_predictor_api.get('/') def home(): return "Welcome to the Sales Prediction API!" @forecast_predictor_api.post('/v1/predict') def predict_single(): # Get the JSON data from the request body product_data = request.get_json() # Extract relevant features from the JSON data sample = { 'Product_Weight': product_data['Product_Weight'], 'Product_Allocated_Area': product_data['Product_Allocated_Area'], 'Product_MRP': product_data['Product_MRP'], 'Store_Establishment_Year': product_data['Store_Establishment_Year'], 'Product_Sugar_Content_No Sugar': product_data['Product_Sugar_Content_No Sugar'], 'Product_Sugar_Content_Regular': product_data['Product_Sugar_Content_Regular'], 'Product_Sugar_Content_reg': product_data['Product_Sugar_Content_reg'], 'Product_Type_Breads': product_data['Product_Type_Breads'], 'Product_Type_Breakfast': product_data['Product_Type_Breakfast'], 'Product_Type_Canned': product_data['Product_Type_Canned'], 'Product_Type_Dairy': product_data['Product_Type_Dairy'], 'Product_Type_Frozen Foods': product_data['Product_Type_Frozen Foods'], 'Product_Type_Fruits and Vegetables': product_data['Product_Type_Fruits and Vegetables'], 'Product_Type_Hard Drinks': product_data['Product_Type_Hard Drinks'], 'Product_Type_Health and Hygiene': product_data['Product_Type_Health and Hygiene'], 'Product_Type_Household': product_data['Product_Type_Household'], 'Product_Type_Meat': product_data['Product_Type_Meat'], 'Product_Type_Others': product_data['Product_Type_Others'], 'Product_Type_Seafood': product_data['Product_Type_Seafood'], 'Product_Type_Snack Foods': product_data['Product_Type_Snack Foods'], 'Product_Type_Soft Drinks': product_data['Product_Type_Soft Drinks'], 'Product_Type_Starchy Foods': product_data['Product_Type_Starchy Foods'], 'Store_Size_Medium': product_data['Store_Size_Medium'], 'Store_Size_Small': product_data['Store_Size_Small'], 'Store_Location_City_Type_Tier 2': product_data['Store_Location_City_Type_Tier 2'], 'Store_Location_City_Type_Tier 3': product_data['Store_Location_City_Type_Tier 3'], 'Store_Type_Food Mart': product_data['Store_Type_Food Mart'], 'Store_Type_Supermarket Type1': product_data['Store_Type_Supermarket Type1'], 'Store_Type_Supermarket Type2': product_data['Store_Type_Supermarket Type2'] } # Convert the extracted data into a Pandas DataFrame input_data = pd.DataFrame([sample]) # Make prediction (get log_price) predicted_price = model.predict(input_data)[0] # Convert predicted_price to Python float predicted_price = round(float(predicted_price), 2) # The conversion above is needed as we convert the model prediction (log price) to actual price using np.exp, which returns predictions as NumPy float32 values. # When we send this value directly within a JSON response, Flask's jsonify function encounters a datatype error # Return the actual price return jsonify({'Predicted Price (in dollars)': predicted_price}) # Run the Flask application in debug mode if this script is executed directly if __name__ == '__main__': forecast_predictor_api.run(debug=True)