File size: 7,322 Bytes
af06f03 e6f3be5 00fa330 af06f03 7e618b5 1564347 7e618b5 af06f03 7e618b5 00fa330 b196e5a 7e618b5 2aacd56 7e618b5 c81bb04 7e618b5 2aacd56 b15e05b 7e618b5 df122f4 00fa330 6fb0686 b196e5a e6f3be5 7e618b5 e6f3be5 af35711 e6f3be5 af35711 7e618b5 af35711 7e618b5 af35711 7e618b5 e6f3be5 7e618b5 00fa330 4463d9f 7e618b5 4463d9f 7e618b5 e6f3be5 af35711 e6f3be5 7e618b5 6fb0686 7e618b5 5daceab b2ed45a 5daceab b2ed45a 5daceab e2b4eda c81bb04 ce299a7 c81bb04 7e618b5 5daceab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from sentence_transformers import SentenceTransformer
import streamlit as st
import pandas as pd
from PyPDF2 import PdfReader
from sklearn.metrics.pairwise import cosine_similarity
from gliner import GLiNER
import plotly.express as px
import time
import numpy as np
with st.sidebar:
st.button("DEMO APP", type="primary")
expander = st.expander("**Important notes on the AI Resume Analysis based on Sentence Similarity App**")
expander.write('''
**Supported File Formats**
This app accepts files in .pdf formats.
**How to Use**
Paste the job description first. Then, upload the resume of each applicant to retrieve the results.
**Usage Limits**
For each applicant you can upload their resume and request results once (1 request per applicant's resume).
At the bottom of the app, you can also upload an applicant's resume once (1 request) to visualize their profile as a treemap chart. If you hover over the interactive graph, an icon will appear to download it.
**Subscription Management**
This demo app offers a one-day subscription, expiring after 24 hours. If you are interested in building your own AI Resume Analysis based on Sentence Similarity Web App, we invite you to explore our NLP Web App Store on our website. You can select your desired features, place your order, and we will deliver your custom app within five business days. If you wish to delete your Account with us, please contact us at [email protected]
**Customization**
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
**File Handling and Errors**
The app may display an error message if your file is corrupt, or has other errors.
For any errors or inquiries, please contact us at [email protected]
''')
model = SentenceTransformer("all-MiniLM-L6-v2")
st.title("AI Resume Analysis based on Sentence Similarity App")
st.divider()
job_desc = st.text_area("Paste the job description and then press Ctrl + Enter", key="job_desc")
if 'applicant_data' not in st.session_state:
st.session_state['applicant_data'] = {}
max_attempts = 1
for i in range(1, 51): # Looping for 50 applicants
st.subheader(f"Applicant {i} Resume", divider="green")
applicant_key = f"applicant_{i}"
upload_key = f"candidate_{i}"
if applicant_key not in st.session_state['applicant_data']:
st.session_state['applicant_data'][applicant_key] = {'upload_count': 0, 'uploaded_file': None, 'analysis_done': False}
if st.session_state['applicant_data'][applicant_key]['upload_count'] < max_attempts:
uploaded_file = st.file_uploader(f"Upload Applicant's {i} resume", type="pdf", key=upload_key)
if uploaded_file:
st.session_state['applicant_data'][applicant_key]['uploaded_file'] = uploaded_file
st.session_state['applicant_data'][applicant_key]['upload_count'] += 1
st.session_state['applicant_data'][applicant_key]['analysis_done'] = False # Reset analysis flag
if st.session_state['applicant_data'][applicant_key]['uploaded_file'] and not st.session_state['applicant_data'][applicant_key]['analysis_done']:
try:
pdf_reader = PdfReader(st.session_state['applicant_data'][applicant_key]['uploaded_file'])
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
with st.expander(f"See Applicant's {i} resume"):
st.write(text_data)
# Encode the job description and resume text separately
job_embedding = model.encode([job_desc])
resume_embedding = model.encode([text_data])
with st.spinner("Wait for it...", show_time=True):
similarity_score = model.similarity(job_embedding, resume_embedding)[0][0]
time.sleep(2)
with st.popover(f"See Result for Applicant {i}"):
st.write(f"Similarity between Applicant's resume and job description based on keywords: {similarity_score:.2f}")
st.info(
f"A score closer to 1 (0.80, 0.90) means higher similarity between Applicant's {i} resume and job description. A score closer to 0 (0.20, 0.30) means lower similarity between Applicant's {i} resume and job description.")
st.session_state['applicant_data'][applicant_key]['analysis_done'] = True
except Exception as e:
st.error(f"An error occurred while processing Applicant {i}'s resume: {e}")
else:
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
if st.session_state['applicant_data'][applicant_key]['upload_count'] > 0:
st.info(f"Files uploaded for Applicant {i}: {st.session_state['applicant_data'][applicant_key]['upload_count']} time(s).")
st.divider()
st.subheader("Visualise", divider="blue")
model = SentenceTransformer("all-MiniLM-L6-v2")
if 'upload_count' not in st.session_state:
st.session_state['upload_count'] = 0
max_attempts = 1
if st.session_state['upload_count'] < max_attempts:
uploaded_files = st.file_uploader("Upload Applicant's resume", type="pdf", key="applicant 1")
if uploaded_files:
st.session_state['upload_count'] += 1
with st.spinner("Wait for it...", show_time=True):
time.sleep(2)
pdf_reader = PdfReader(uploaded_files)
text_data = ""
for page in pdf_reader.pages:
text_data += page.extract_text()
job_desc_series = pd.Series([job_desc], name='Text') # Convert job_desc to a Series
data = pd.Series([text_data], name='Text') # Ensure text_data is also a Series
frames = [job_desc_series, data]
result = pd.concat(frames, ignore_index=True) # Concatenate along rows, reset index
model1 = GLiNER.from_pretrained("urchade/gliner_base")
labels = ["person", "country", "organization", "role", "skills"]
entities = model1.predict_entities(text_data, labels)
df = pd.DataFrame(entities)
st.subheader("Applicant's Profile", divider = "orange")
fig = px.treemap(entities, path=[px.Constant("all"), 'text', 'label'],
values='score', color='label')
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
st.plotly_chart(fig, key="figure 1")
job_embedding = model.encode([job_desc])
resume_embedding = model.encode([text_data])
similarity_score = model.similarity(job_embedding, resume_embedding)[0][0]
st.metric(label="Similarity Score between Applicant's Profile and Job Description", value=f"{similarity_score:.2f}", border=True)
else:
st.warning(f"Maximum upload attempts has been reached ({max_attempts}).")
if 'upload_count' in st.session_state and st.session_state['upload_count'] > 0:
st.info(f"Files uploaded {st.session_state['upload_count']} time(s).")
|