Spaces:
Sleeping
Sleeping
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import torch | |
class ImagePromptModel: | |
def __init__(self): | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
def generate_prompt(self, image_path): | |
raw_image = Image.open(image_path).convert('RGB') | |
inputs = self.processor(raw_image, return_tensors="pt") | |
out = self.model.generate(**inputs) | |
return self.processor.decode(out[0], skip_special_tokens=True) | |