Spaces:
Running
on
Zero
Running
on
Zero
nithinraok
commited on
Commit
Β·
75c1233
1
Parent(s):
ea560f2
Add space with mp3 via LFS
Browse files- .gitattributes +1 -0
- app.py +427 -0
- data/example-yt_saTD1u8PorI.mp3 +3 -0
- packages.txt +2 -0
- requirements.txt +2 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from nemo.collections.asr.models import ASRModel
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import gc
|
6 |
+
import shutil
|
7 |
+
from pathlib import Path
|
8 |
+
from pydub import AudioSegment
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import gradio.themes as gr_themes
|
12 |
+
import csv
|
13 |
+
import datetime
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
MODEL_NAME="nvidia/parakeet-tdt-0.6b-v3"
|
17 |
+
|
18 |
+
model = ASRModel.from_pretrained(model_name=MODEL_NAME)
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
|
22 |
+
def start_session(request: gr.Request):
|
23 |
+
session_hash = request.session_hash
|
24 |
+
session_dir = Path(f'/tmp/{session_hash}')
|
25 |
+
session_dir.mkdir(parents=True, exist_ok=True)
|
26 |
+
|
27 |
+
print(f"Session with hash {session_hash} started.")
|
28 |
+
return session_dir.as_posix()
|
29 |
+
|
30 |
+
def end_session(request: gr.Request):
|
31 |
+
session_hash = request.session_hash
|
32 |
+
session_dir = Path(f'/tmp/{session_hash}')
|
33 |
+
|
34 |
+
if session_dir.exists():
|
35 |
+
shutil.rmtree(session_dir)
|
36 |
+
|
37 |
+
print(f"Session with hash {session_hash} ended.")
|
38 |
+
|
39 |
+
def get_audio_segment(audio_path, start_second, end_second):
|
40 |
+
if not audio_path or not Path(audio_path).exists():
|
41 |
+
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
|
42 |
+
return None
|
43 |
+
try:
|
44 |
+
start_ms = int(start_second * 1000)
|
45 |
+
end_ms = int(end_second * 1000)
|
46 |
+
|
47 |
+
start_ms = max(0, start_ms)
|
48 |
+
if end_ms <= start_ms:
|
49 |
+
print(f"Warning: End time ({end_second}s) is not after start time ({start_second}s). Adjusting end time.")
|
50 |
+
end_ms = start_ms + 100
|
51 |
+
|
52 |
+
audio = AudioSegment.from_file(audio_path)
|
53 |
+
clipped_audio = audio[start_ms:end_ms]
|
54 |
+
|
55 |
+
samples = np.array(clipped_audio.get_array_of_samples())
|
56 |
+
if clipped_audio.channels == 2:
|
57 |
+
samples = samples.reshape((-1, 2)).mean(axis=1).astype(samples.dtype)
|
58 |
+
|
59 |
+
frame_rate = clipped_audio.frame_rate
|
60 |
+
if frame_rate <= 0:
|
61 |
+
print(f"Warning: Invalid frame rate ({frame_rate}) detected for clipped audio.")
|
62 |
+
frame_rate = audio.frame_rate
|
63 |
+
|
64 |
+
if samples.size == 0:
|
65 |
+
print(f"Warning: Clipped audio resulted in empty samples array ({start_second}s to {end_second}s).")
|
66 |
+
return None
|
67 |
+
|
68 |
+
return (frame_rate, samples)
|
69 |
+
except FileNotFoundError:
|
70 |
+
print(f"Error: Audio file not found at path: {audio_path}")
|
71 |
+
return None
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Error clipping audio {audio_path} from {start_second}s to {end_second}s: {e}")
|
74 |
+
return None
|
75 |
+
|
76 |
+
def format_srt_time(seconds: float) -> str:
|
77 |
+
"""Converts seconds to SRT time format HH:MM:SS,mmm using datetime.timedelta"""
|
78 |
+
sanitized_total_seconds = max(0.0, seconds)
|
79 |
+
delta = datetime.timedelta(seconds=sanitized_total_seconds)
|
80 |
+
total_int_seconds = int(delta.total_seconds())
|
81 |
+
|
82 |
+
hours = total_int_seconds // 3600
|
83 |
+
remainder_seconds_after_hours = total_int_seconds % 3600
|
84 |
+
minutes = remainder_seconds_after_hours // 60
|
85 |
+
seconds_part = remainder_seconds_after_hours % 60
|
86 |
+
milliseconds = delta.microseconds // 1000
|
87 |
+
|
88 |
+
return f"{hours:02d}:{minutes:02d}:{seconds_part:02d},{milliseconds:03d}"
|
89 |
+
|
90 |
+
def generate_srt_content(segment_timestamps: list) -> str:
|
91 |
+
"""Generates SRT formatted string from segment timestamps."""
|
92 |
+
srt_content = []
|
93 |
+
for i, ts in enumerate(segment_timestamps):
|
94 |
+
start_time = format_srt_time(ts['start'])
|
95 |
+
end_time = format_srt_time(ts['end'])
|
96 |
+
text = ts['segment']
|
97 |
+
srt_content.append(str(i + 1))
|
98 |
+
srt_content.append(f"{start_time} --> {end_time}")
|
99 |
+
srt_content.append(text)
|
100 |
+
srt_content.append("")
|
101 |
+
return "\n".join(srt_content)
|
102 |
+
|
103 |
+
@spaces.GPU
|
104 |
+
def get_transcripts_and_raw_times(audio_path, session_dir):
|
105 |
+
if not audio_path:
|
106 |
+
gr.Error("No audio file path provided for transcription.", duration=None)
|
107 |
+
# Return an update to hide the buttons
|
108 |
+
return [], [], None, gr.DownloadButton(label="Download Transcript (CSV)", visible=False), gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
|
109 |
+
|
110 |
+
vis_data = [["N/A", "N/A", "Processing failed"]]
|
111 |
+
raw_times_data = [[0.0, 0.0]]
|
112 |
+
processed_audio_path = None
|
113 |
+
csv_file_path = None
|
114 |
+
srt_file_path = None
|
115 |
+
original_path_name = Path(audio_path).name
|
116 |
+
audio_name = Path(audio_path).stem
|
117 |
+
|
118 |
+
# Initialize button states
|
119 |
+
csv_button_update = gr.DownloadButton(label="Download Transcript (CSV)", visible=False)
|
120 |
+
srt_button_update = gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
|
121 |
+
|
122 |
+
try:
|
123 |
+
try:
|
124 |
+
gr.Info(f"Loading audio: {original_path_name}", duration=2)
|
125 |
+
audio = AudioSegment.from_file(audio_path)
|
126 |
+
duration_sec = audio.duration_seconds
|
127 |
+
except Exception as load_e:
|
128 |
+
gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None)
|
129 |
+
return [["Error", "Error", "Load failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
130 |
+
|
131 |
+
resampled = False
|
132 |
+
mono = False
|
133 |
+
|
134 |
+
target_sr = 16000
|
135 |
+
if audio.frame_rate != target_sr:
|
136 |
+
try:
|
137 |
+
audio = audio.set_frame_rate(target_sr)
|
138 |
+
resampled = True
|
139 |
+
except Exception as resample_e:
|
140 |
+
gr.Error(f"Failed to resample audio: {resample_e}", duration=None)
|
141 |
+
return [["Error", "Error", "Resample failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
142 |
+
|
143 |
+
if audio.channels == 2:
|
144 |
+
try:
|
145 |
+
audio = audio.set_channels(1)
|
146 |
+
mono = True
|
147 |
+
except Exception as mono_e:
|
148 |
+
gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None)
|
149 |
+
return [["Error", "Error", "Mono conversion failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
150 |
+
elif audio.channels > 2:
|
151 |
+
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
|
152 |
+
return [["Error", "Error", f"{audio.channels}-channel audio not supported"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
153 |
+
|
154 |
+
if resampled or mono:
|
155 |
+
try:
|
156 |
+
processed_audio_path = Path(session_dir, f"{audio_name}_resampled.wav")
|
157 |
+
audio.export(processed_audio_path, format="wav")
|
158 |
+
transcribe_path = processed_audio_path.as_posix()
|
159 |
+
info_path_name = f"{original_path_name} (processed)"
|
160 |
+
except Exception as export_e:
|
161 |
+
gr.Error(f"Failed to export processed audio: {export_e}", duration=None)
|
162 |
+
if processed_audio_path and os.path.exists(processed_audio_path):
|
163 |
+
os.remove(processed_audio_path)
|
164 |
+
return [["Error", "Error", "Export failed"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
165 |
+
else:
|
166 |
+
transcribe_path = audio_path
|
167 |
+
info_path_name = original_path_name
|
168 |
+
|
169 |
+
# Flag to track if long audio settings were applied
|
170 |
+
long_audio_settings_applied = False
|
171 |
+
try:
|
172 |
+
model.to(device)
|
173 |
+
model.to(torch.float32)
|
174 |
+
gr.Info(f"Transcribing {info_path_name} on {device}...", duration=2)
|
175 |
+
|
176 |
+
# Check duration and apply specific settings for long audio
|
177 |
+
if duration_sec > 480 : # 8 minutes
|
178 |
+
try:
|
179 |
+
gr.Info("Audio longer than 8 minutes. Applying optimized settings for long transcription.", duration=3)
|
180 |
+
print("Applying long audio settings: Local Attention and Chunking.")
|
181 |
+
model.change_attention_model("rel_pos_local_attn", [256,256])
|
182 |
+
model.change_subsampling_conv_chunking_factor(1) # 1 = auto select
|
183 |
+
long_audio_settings_applied = True
|
184 |
+
except Exception as setting_e:
|
185 |
+
gr.Warning(f"Could not apply long audio settings: {setting_e}", duration=5)
|
186 |
+
print(f"Warning: Failed to apply long audio settings: {setting_e}")
|
187 |
+
# Proceed without long audio settings if applying them failed
|
188 |
+
|
189 |
+
model.to(torch.bfloat16)
|
190 |
+
output = model.transcribe([transcribe_path], timestamps=True)
|
191 |
+
|
192 |
+
if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp:
|
193 |
+
gr.Error("Transcription failed or produced unexpected output format.", duration=None)
|
194 |
+
# Return an update to hide the buttons
|
195 |
+
return [["Error", "Error", "Transcription Format Issue"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
196 |
+
|
197 |
+
segment_timestamps = output[0].timestamp['segment']
|
198 |
+
csv_headers = ["Start (s)", "End (s)", "Segment"]
|
199 |
+
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps]
|
200 |
+
raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps]
|
201 |
+
|
202 |
+
# CSV file generation
|
203 |
+
try:
|
204 |
+
csv_file_path = Path(session_dir, f"transcription_{audio_name}.csv")
|
205 |
+
writer = csv.writer(open(csv_file_path, 'w'))
|
206 |
+
writer.writerow(csv_headers)
|
207 |
+
writer.writerows(vis_data)
|
208 |
+
print(f"CSV transcript saved to temporary file: {csv_file_path}")
|
209 |
+
csv_button_update = gr.DownloadButton(value=csv_file_path, visible=True, label="Download Transcript (CSV)")
|
210 |
+
except Exception as csv_e:
|
211 |
+
gr.Error(f"Failed to create transcript CSV file: {csv_e}", duration=None)
|
212 |
+
print(f"Error writing CSV: {csv_e}")
|
213 |
+
|
214 |
+
if segment_timestamps:
|
215 |
+
try:
|
216 |
+
srt_content = generate_srt_content(segment_timestamps)
|
217 |
+
srt_file_path = Path(session_dir, f"transcription_{audio_name}.srt")
|
218 |
+
with open(srt_file_path, 'w', encoding='utf-8') as f:
|
219 |
+
f.write(srt_content)
|
220 |
+
print(f"SRT transcript saved to temporary file: {srt_file_path}")
|
221 |
+
srt_button_update = gr.DownloadButton(value=srt_file_path, visible=True, label="Download Transcript (SRT)")
|
222 |
+
except Exception as srt_e:
|
223 |
+
gr.Warning(f"Failed to create transcript SRT file: {srt_e}", duration=5)
|
224 |
+
print(f"Error writing SRT: {srt_e}")
|
225 |
+
|
226 |
+
gr.Info("Transcription complete.", duration=2)
|
227 |
+
return vis_data, raw_times_data, audio_path, csv_button_update, srt_button_update
|
228 |
+
|
229 |
+
except torch.cuda.OutOfMemoryError as e:
|
230 |
+
error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.'
|
231 |
+
print(f"CUDA OutOfMemoryError: {e}")
|
232 |
+
gr.Error(error_msg, duration=None)
|
233 |
+
return [["OOM", "OOM", error_msg]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
234 |
+
|
235 |
+
except FileNotFoundError:
|
236 |
+
error_msg = f"Audio file for transcription not found: {Path(transcribe_path).name}."
|
237 |
+
print(f"Error: Transcribe audio file not found at path: {transcribe_path}")
|
238 |
+
gr.Error(error_msg, duration=None)
|
239 |
+
return [["Error", "Error", "File not found for transcription"]], [[0.0, 0.0]], audio_path, csv_button_update, srt_button_update
|
240 |
+
|
241 |
+
except Exception as e:
|
242 |
+
error_msg = f"Transcription failed: {e}"
|
243 |
+
print(f"Error during transcription processing: {e}")
|
244 |
+
gr.Error(error_msg, duration=None)
|
245 |
+
vis_data = [["Error", "Error", error_msg]]
|
246 |
+
raw_times_data = [[0.0, 0.0]]
|
247 |
+
return vis_data, raw_times_data, audio_path, csv_button_update, srt_button_update
|
248 |
+
finally:
|
249 |
+
# --- Model Cleanup ---
|
250 |
+
try:
|
251 |
+
# Revert settings if they were applied for long audio
|
252 |
+
if long_audio_settings_applied:
|
253 |
+
try:
|
254 |
+
print("Reverting long audio settings.")
|
255 |
+
model.change_attention_model("rel_pos")
|
256 |
+
model.change_subsampling_conv_chunking_factor(-1)
|
257 |
+
long_audio_settings_applied = False # Reset flag
|
258 |
+
except Exception as revert_e:
|
259 |
+
print(f"Warning: Failed to revert long audio settings: {revert_e}")
|
260 |
+
gr.Warning(f"Issue reverting model settings after long transcription: {revert_e}", duration=5)
|
261 |
+
|
262 |
+
# Original cleanup
|
263 |
+
if 'model' in locals() and hasattr(model, 'cpu'):
|
264 |
+
if device == 'cuda':
|
265 |
+
model.cpu()
|
266 |
+
gc.collect()
|
267 |
+
if device == 'cuda':
|
268 |
+
torch.cuda.empty_cache()
|
269 |
+
except Exception as cleanup_e:
|
270 |
+
print(f"Error during model cleanup: {cleanup_e}")
|
271 |
+
gr.Warning(f"Issue during model cleanup: {cleanup_e}", duration=5)
|
272 |
+
# --- End Model Cleanup ---
|
273 |
+
|
274 |
+
finally:
|
275 |
+
if processed_audio_path and os.path.exists(processed_audio_path):
|
276 |
+
try:
|
277 |
+
os.remove(processed_audio_path)
|
278 |
+
print(f"Temporary audio file {processed_audio_path} removed.")
|
279 |
+
except Exception as e:
|
280 |
+
print(f"Error removing temporary audio file {processed_audio_path}: {e}")
|
281 |
+
|
282 |
+
def play_segment(evt: gr.SelectData, raw_ts_list, current_audio_path):
|
283 |
+
if not isinstance(raw_ts_list, list):
|
284 |
+
print(f"Warning: raw_ts_list is not a list ({type(raw_ts_list)}). Cannot play segment.")
|
285 |
+
return gr.Audio(value=None, label="Selected Segment")
|
286 |
+
|
287 |
+
if not current_audio_path:
|
288 |
+
print("No audio path available to play segment from.")
|
289 |
+
return gr.Audio(value=None, label="Selected Segment")
|
290 |
+
|
291 |
+
selected_index = evt.index[0]
|
292 |
+
|
293 |
+
if selected_index < 0 or selected_index >= len(raw_ts_list):
|
294 |
+
print(f"Invalid index {selected_index} selected for list of length {len(raw_ts_list)}.")
|
295 |
+
return gr.Audio(value=None, label="Selected Segment")
|
296 |
+
|
297 |
+
if not isinstance(raw_ts_list[selected_index], (list, tuple)) or len(raw_ts_list[selected_index]) != 2:
|
298 |
+
print(f"Warning: Data at index {selected_index} is not in the expected format [start, end].")
|
299 |
+
return gr.Audio(value=None, label="Selected Segment")
|
300 |
+
|
301 |
+
start_time_s, end_time_s = raw_ts_list[selected_index]
|
302 |
+
|
303 |
+
print(f"Attempting to play segment: {current_audio_path} from {start_time_s:.2f}s to {end_time_s:.2f}s")
|
304 |
+
|
305 |
+
segment_data = get_audio_segment(current_audio_path, start_time_s, end_time_s)
|
306 |
+
|
307 |
+
if segment_data:
|
308 |
+
print("Segment data retrieved successfully.")
|
309 |
+
return gr.Audio(value=segment_data, autoplay=True, label=f"Segment: {start_time_s:.2f}s - {end_time_s:.2f}s", interactive=False)
|
310 |
+
else:
|
311 |
+
print("Failed to get audio segment data.")
|
312 |
+
return gr.Audio(value=None, label="Selected Segment")
|
313 |
+
|
314 |
+
article = (
|
315 |
+
"<p style='font-size: 1.1em;'>"
|
316 |
+
"This demo showcases <code><a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3'>parakeet-tdt-0.6b-v3</a></code>, a 600-million-parameter <strong>multilingual</strong> model designed for high-quality speech recognition with automatic language detection."
|
317 |
+
"</p>"
|
318 |
+
"<p><strong style='color: red; font-size: 1.2em;'>Key Features:</strong></p>"
|
319 |
+
"<ul style='font-size: 1.1em;'>"
|
320 |
+
" <li>Automatic punctuation and capitalization</li>"
|
321 |
+
" <li>Accurate word-level timestamps (click on a segment in the table below to play it!)</li>"
|
322 |
+
" <li>Multilingual transcription across 25 European languages with automatic language detection</li>"
|
323 |
+
" <li>Long audio transcription: up to 24 minutes with full attention (A100 80GB) or up to 3 hours with local attention</li>"
|
324 |
+
"</ul>"
|
325 |
+
"<p style='font-size: 1.1em;'>"
|
326 |
+
"<strong>Supported Languages:</strong> bg, hr, cs, da, nl, en, et, fi, fr, de, el, hu, it, lv, lt, mt, pl, pt, ro, sk, sl, es, sv, ru, uk"
|
327 |
+
"</p>"
|
328 |
+
"<p style='font-size: 1.1em;'>"
|
329 |
+
"This model is <strong>available for commercial and non-commercial use</strong> (CC BY 4.0)."
|
330 |
+
"</p>"
|
331 |
+
"<p style='text-align: center;'>"
|
332 |
+
"<a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3' target='_blank'>ποΈ Learn more about the Model</a> | "
|
333 |
+
"<a href='https://arxiv.org/abs/2305.05084' target='_blank'>π Fast Conformer paper</a> | "
|
334 |
+
"<a href='https://arxiv.org/abs/2304.06795' target='_blank'>π TDT paper</a> | "
|
335 |
+
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>π§βπ» NeMo Repository</a>"
|
336 |
+
"</p>"
|
337 |
+
)
|
338 |
+
|
339 |
+
examples = [
|
340 |
+
["data/example-yt_saTD1u8PorI.mp3"],
|
341 |
+
]
|
342 |
+
|
343 |
+
# Define an NVIDIA-inspired theme
|
344 |
+
nvidia_theme = gr_themes.Default(
|
345 |
+
primary_hue=gr_themes.Color(
|
346 |
+
c50="#E6F1D9", # Lightest green
|
347 |
+
c100="#CEE3B3",
|
348 |
+
c200="#B5D58C",
|
349 |
+
c300="#9CC766",
|
350 |
+
c400="#84B940",
|
351 |
+
c500="#76B900", # NVIDIA Green
|
352 |
+
c600="#68A600",
|
353 |
+
c700="#5A9200",
|
354 |
+
c800="#4C7E00",
|
355 |
+
c900="#3E6A00", # Darkest green
|
356 |
+
c950="#2F5600"
|
357 |
+
),
|
358 |
+
neutral_hue="gray", # Use gray for neutral elements
|
359 |
+
font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
360 |
+
).set()
|
361 |
+
|
362 |
+
# Apply the custom theme
|
363 |
+
with gr.Blocks(theme=nvidia_theme) as demo:
|
364 |
+
model_display_name = MODEL_NAME.split('/')[-1] if '/' in MODEL_NAME else MODEL_NAME
|
365 |
+
gr.Markdown(f"<h1 style='text-align: center; margin: 0 auto;'>Speech Transcription with {model_display_name}</h1>")
|
366 |
+
gr.HTML(article)
|
367 |
+
|
368 |
+
current_audio_path_state = gr.State(None)
|
369 |
+
raw_timestamps_list_state = gr.State([])
|
370 |
+
|
371 |
+
session_dir = gr.State()
|
372 |
+
demo.load(start_session, outputs=[session_dir])
|
373 |
+
|
374 |
+
with gr.Tabs():
|
375 |
+
with gr.TabItem("Audio File"):
|
376 |
+
file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File")
|
377 |
+
gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)")
|
378 |
+
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
|
379 |
+
|
380 |
+
with gr.TabItem("Microphone"):
|
381 |
+
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
|
382 |
+
mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary")
|
383 |
+
|
384 |
+
gr.Markdown("---")
|
385 |
+
gr.Markdown("<p><strong style='color: #FF0000; font-size: 1.2em;'>Transcription Results (Click row to play segment)</strong></p>")
|
386 |
+
|
387 |
+
# Define the DownloadButton *before* the DataFrame
|
388 |
+
with gr.Row():
|
389 |
+
download_btn_csv = gr.DownloadButton(label="Download Transcript (CSV)", visible=False)
|
390 |
+
download_btn_srt = gr.DownloadButton(label="Download Transcript (SRT)", visible=False)
|
391 |
+
|
392 |
+
vis_timestamps_df = gr.DataFrame(
|
393 |
+
headers=["Start (s)", "End (s)", "Segment"],
|
394 |
+
datatype=["number", "number", "str"],
|
395 |
+
wrap=True,
|
396 |
+
label="Transcription Segments"
|
397 |
+
)
|
398 |
+
|
399 |
+
# selected_segment_player was defined after download_btn previously, keep it after df for layout
|
400 |
+
selected_segment_player = gr.Audio(label="Selected Segment", interactive=False)
|
401 |
+
|
402 |
+
mic_transcribe_btn.click(
|
403 |
+
fn=get_transcripts_and_raw_times,
|
404 |
+
inputs=[mic_input, session_dir],
|
405 |
+
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn_csv, download_btn_srt],
|
406 |
+
api_name="transcribe_mic"
|
407 |
+
)
|
408 |
+
|
409 |
+
file_transcribe_btn.click(
|
410 |
+
fn=get_transcripts_and_raw_times,
|
411 |
+
inputs=[file_input, session_dir],
|
412 |
+
outputs=[vis_timestamps_df, raw_timestamps_list_state, current_audio_path_state, download_btn_csv, download_btn_srt],
|
413 |
+
api_name="transcribe_file"
|
414 |
+
)
|
415 |
+
|
416 |
+
vis_timestamps_df.select(
|
417 |
+
fn=play_segment,
|
418 |
+
inputs=[raw_timestamps_list_state, current_audio_path_state],
|
419 |
+
outputs=[selected_segment_player],
|
420 |
+
)
|
421 |
+
|
422 |
+
demo.unload(end_session)
|
423 |
+
|
424 |
+
if __name__ == "__main__":
|
425 |
+
print("Launching Gradio Demo...")
|
426 |
+
demo.queue()
|
427 |
+
demo.launch()
|
data/example-yt_saTD1u8PorI.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cb340c3b868eb3695cdb06683decbff217331c2459a69394be8d3ad3b53bdf0
|
3 |
+
size 2493472
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ffmpeg
|
2 |
+
libsndfile1
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Cython
|
2 |
+
git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[asr]
|