Neslihan Bisgin commited on
Commit
c85e599
·
1 Parent(s): 1aa530a

Add application file

Browse files
Files changed (1) hide show
  1. app.py +35 -2
app.py CHANGED
@@ -1,4 +1,37 @@
1
  import streamlit as st
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
+ # Load the model and tokenizer
6
+ model_name = "m3rg-iitd/llamat-3-chat" #"gpt2" # You can replace this with any model of your choice
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+
10
+ st.title("Chatbot with LlaMat")
11
+ st.write("Ask me anything about material!")
12
+
13
+ # Initialize session state for chat history
14
+ if "messages" not in st.session_state:
15
+ st.session_state.messages = []
16
+
17
+ # Function to generate response
18
+ def generate_response(prompt):
19
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
20
+ outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
21
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
+ return response
23
+
24
+ # User input
25
+ user_input = st.text_input("You: ", "")
26
+
27
+ if user_input:
28
+ st.session_state.messages.append({"role": "user", "content": user_input})
29
+ response = generate_response(user_input)
30
+ st.session_state.messages.append({"role": "bot", "content": response})
31
+
32
+ # Display chat history
33
+ for message in st.session_state.messages:
34
+ if message["role"] == "user":
35
+ st.write(f"You: {message['content']}")
36
+ else:
37
+ st.write(f"Bot: {message['content']}")