import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer model_name = "m3rg-iitd/llamat-3-chat" #"gpt2" # You can replace this with any model of your choice model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) st.title("Chatbot with LlaMat") st.write("Ask me anything about material!") # Initialize session state for chat history if "messages" not in st.session_state: st.session_state.messages = [] # Function to generate response def generate_response(prompt): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=100, num_return_sequences=1) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # User input user_input = st.text_input("You: ", "") if user_input: st.session_state.messages.append({"role": "user", "content": user_input}) response = generate_response(user_input) st.session_state.messages.append({"role": "bot", "content": response}) # Display chat history for message in st.session_state.messages: if message["role"] == "user": st.write(f"You: {message['content']}") else: st.write(f"Bot: {message['content']}")