nyasukun commited on
Commit
b4e2f0d
·
1 Parent(s): 7f2ec60
Files changed (1) hide show
  1. app.py +7 -33
app.py CHANGED
@@ -20,14 +20,13 @@ except ImportError:
20
  return decorator
21
  spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})
22
 
23
- # Model configuration - can be replaced with other models
24
  MODEL_NAME = "fdtn-ai/Foundation-Sec-8B"
25
- #MODEL_NAME = "sshleifer/tiny-gpt2"
26
 
27
  # Initialize tokenizer and model using pipeline approach
28
  print(f"Loading model: {MODEL_NAME}")
29
  try:
30
- print(f"Initializing text generation model: {MODEL_NAME}")
31
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
32
  text_pipeline = pipeline(
33
  "text-generation",
@@ -37,14 +36,14 @@ try:
37
  device_map="auto",
38
  trust_remote_code=True
39
  )
40
- print(f"Model initialized successfully: {MODEL_NAME}")
41
 
42
  # Extract model and tokenizer from pipeline for direct access
43
  model = text_pipeline.model
44
  tok = text_pipeline.tokenizer
45
 
46
  except Exception as e:
47
- print(f"Error initializing model {MODEL_NAME}: {str(e)}")
48
  print("Trying with simplified parameters...")
49
 
50
  try:
@@ -56,36 +55,11 @@ except Exception as e:
56
  )
57
  model = text_pipeline.model
58
  tok = text_pipeline.tokenizer
59
- print(f"Model loaded with simplified parameters: {MODEL_NAME}")
60
 
61
  except Exception as e2:
62
- print(f"Second attempt failed: {str(e2)}")
63
- print("Falling back to distilgpt2 (uses safetensors)...")
64
-
65
- # Use distilgpt2 which uses safetensors format and is more compatible
66
- MODEL_NAME = "distilgpt2"
67
- try:
68
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
69
- text_pipeline = pipeline(
70
- "text-generation",
71
- model=MODEL_NAME,
72
- tokenizer=tokenizer
73
- )
74
- model = text_pipeline.model
75
- tok = text_pipeline.tokenizer
76
- print(f"Fallback model loaded: {MODEL_NAME}")
77
-
78
- except Exception as e3:
79
- print(f"Fallback also failed: {str(e3)}")
80
- print("Trying direct model loading as last resort...")
81
-
82
- # Last resort: direct loading without pipeline
83
- try:
84
- tok = AutoTokenizer.from_pretrained(MODEL_NAME)
85
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).eval()
86
- print(f"Direct loading successful: {MODEL_NAME}")
87
- except Exception as e4:
88
- raise RuntimeError(f"All model loading attempts failed. Last error: {str(e4)}")
89
 
90
  # Log device information
91
  if hasattr(model, 'device'):
 
20
  return decorator
21
  spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})
22
 
23
+ # Model configuration - Foundation-Sec-8B only
24
  MODEL_NAME = "fdtn-ai/Foundation-Sec-8B"
 
25
 
26
  # Initialize tokenizer and model using pipeline approach
27
  print(f"Loading model: {MODEL_NAME}")
28
  try:
29
+ print(f"Initializing Foundation-Sec-8B model...")
30
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
31
  text_pipeline = pipeline(
32
  "text-generation",
 
36
  device_map="auto",
37
  trust_remote_code=True
38
  )
39
+ print(f"Foundation-Sec-8B model initialized successfully")
40
 
41
  # Extract model and tokenizer from pipeline for direct access
42
  model = text_pipeline.model
43
  tok = text_pipeline.tokenizer
44
 
45
  except Exception as e:
46
+ print(f"Error initializing Foundation-Sec-8B model: {str(e)}")
47
  print("Trying with simplified parameters...")
48
 
49
  try:
 
55
  )
56
  model = text_pipeline.model
57
  tok = text_pipeline.tokenizer
58
+ print(f"Foundation-Sec-8B model loaded with simplified parameters")
59
 
60
  except Exception as e2:
61
+ print(f"Failed to load Foundation-Sec-8B model: {str(e2)}")
62
+ raise RuntimeError(f"Could not load Foundation-Sec-8B model. Please ensure the model is accessible and try again. Error: {str(e2)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  # Log device information
65
  if hasattr(model, 'device'):