Spaces:
Runtime error
Runtime error
Commit
·
95bb656
1
Parent(s):
050fc7d
Upload 3 files
Browse files
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 Andrej Karpathy
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
ckpt.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09248381f062fe8bcb33d62800e2ef2210ed52a87c52d8f4d27a8a24df5386ee
|
3 |
+
size 96881431
|
model.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Full definition of a GPT Language Model, all of it in this single file.
|
3 |
+
References:
|
4 |
+
1) the official GPT-2 TensorFlow implementation released by OpenAI:
|
5 |
+
https://github.com/openai/gpt-2/blob/master/src/model.py
|
6 |
+
2) huggingface/transformers PyTorch implementation:
|
7 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
8 |
+
"""
|
9 |
+
|
10 |
+
import math
|
11 |
+
from dataclasses import dataclass
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
from torch.nn import functional as F
|
16 |
+
|
17 |
+
# @torch.jit.script # good to enable when not using torch.compile, disable when using (our default)
|
18 |
+
def new_gelu(x):
|
19 |
+
"""
|
20 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
|
21 |
+
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
|
22 |
+
"""
|
23 |
+
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
24 |
+
|
25 |
+
class LayerNorm(nn.Module):
|
26 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
27 |
+
|
28 |
+
def __init__(self, ndim, bias):
|
29 |
+
super().__init__()
|
30 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
31 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
32 |
+
|
33 |
+
def forward(self, input):
|
34 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
35 |
+
|
36 |
+
class CausalSelfAttention(nn.Module):
|
37 |
+
|
38 |
+
def __init__(self, config):
|
39 |
+
super().__init__()
|
40 |
+
assert config.n_embd % config.n_head == 0
|
41 |
+
# key, query, value projections for all heads, but in a batch
|
42 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
|
43 |
+
# output projection
|
44 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
|
45 |
+
# regularization
|
46 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
47 |
+
self.resid_dropout = nn.Dropout(config.dropout)
|
48 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
49 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
50 |
+
.view(1, 1, config.block_size, config.block_size))
|
51 |
+
self.n_head = config.n_head
|
52 |
+
self.n_embd = config.n_embd
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
56 |
+
|
57 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
58 |
+
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
|
59 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
60 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
61 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
62 |
+
|
63 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
64 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
65 |
+
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
|
66 |
+
att = F.softmax(att, dim=-1)
|
67 |
+
att = self.attn_dropout(att)
|
68 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
69 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
70 |
+
|
71 |
+
# output projection
|
72 |
+
y = self.resid_dropout(self.c_proj(y))
|
73 |
+
return y
|
74 |
+
|
75 |
+
class MLP(nn.Module):
|
76 |
+
|
77 |
+
def __init__(self, config):
|
78 |
+
super().__init__()
|
79 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
|
80 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
|
81 |
+
self.dropout = nn.Dropout(config.dropout)
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
x = self.c_fc(x)
|
85 |
+
x = new_gelu(x)
|
86 |
+
x = self.c_proj(x)
|
87 |
+
x = self.dropout(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
class Block(nn.Module):
|
91 |
+
|
92 |
+
def __init__(self, config):
|
93 |
+
super().__init__()
|
94 |
+
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
|
95 |
+
self.attn = CausalSelfAttention(config)
|
96 |
+
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
|
97 |
+
self.mlp = MLP(config)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = x + self.attn(self.ln_1(x))
|
101 |
+
x = x + self.mlp(self.ln_2(x))
|
102 |
+
return x
|
103 |
+
|
104 |
+
@dataclass
|
105 |
+
class GPTConfig:
|
106 |
+
block_size: int = 1024
|
107 |
+
vocab_size: int = 50257
|
108 |
+
n_layer: int = 12
|
109 |
+
n_head: int = 12
|
110 |
+
n_embd: int = 768
|
111 |
+
dropout: float = 0.0
|
112 |
+
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
|
113 |
+
|
114 |
+
class GPT(nn.Module):
|
115 |
+
|
116 |
+
def __init__(self, config):
|
117 |
+
super().__init__()
|
118 |
+
assert config.vocab_size is not None
|
119 |
+
assert config.block_size is not None
|
120 |
+
self.config = config
|
121 |
+
|
122 |
+
self.transformer = nn.ModuleDict(dict(
|
123 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
124 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
125 |
+
drop = nn.Dropout(config.dropout),
|
126 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
127 |
+
ln_f = LayerNorm(config.n_embd, bias=config.bias),
|
128 |
+
))
|
129 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
130 |
+
# with weight tying when using torch.compile() some warnings get generated:
|
131 |
+
# "UserWarning: functional_call was passed multiple values for tied weights.
|
132 |
+
# This behavior is deprecated and will be an error in future versions"
|
133 |
+
# not 100% sure what this is, so far seems to be harmless. TODO investigate
|
134 |
+
self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
|
135 |
+
|
136 |
+
# init all weights
|
137 |
+
self.apply(self._init_weights)
|
138 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
139 |
+
for pn, p in self.named_parameters():
|
140 |
+
if pn.endswith('c_proj.weight'):
|
141 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
|
142 |
+
|
143 |
+
# report number of parameters
|
144 |
+
n_params = sum(p.numel() for p in self.parameters())
|
145 |
+
print("number of parameters: %.2fM" % (n_params/1e6,))
|
146 |
+
|
147 |
+
def _init_weights(self, module):
|
148 |
+
if isinstance(module, nn.Linear):
|
149 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
150 |
+
if module.bias is not None:
|
151 |
+
torch.nn.init.zeros_(module.bias)
|
152 |
+
elif isinstance(module, nn.Embedding):
|
153 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
154 |
+
elif isinstance(module, (LayerNorm, nn.LayerNorm)):
|
155 |
+
torch.nn.init.ones_(module.weight)
|
156 |
+
if module.bias is not None:
|
157 |
+
torch.nn.init.zeros_(module.bias)
|
158 |
+
|
159 |
+
def forward(self, idx, targets=None):
|
160 |
+
device = idx.device
|
161 |
+
b, t = idx.size()
|
162 |
+
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
|
163 |
+
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
|
164 |
+
|
165 |
+
# forward the GPT model itself
|
166 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
167 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd)
|
168 |
+
x = self.transformer.drop(tok_emb + pos_emb)
|
169 |
+
for block in self.transformer.h:
|
170 |
+
x = block(x)
|
171 |
+
x = self.transformer.ln_f(x)
|
172 |
+
|
173 |
+
if targets is not None:
|
174 |
+
# if we are given some desired targets also calculate the loss
|
175 |
+
logits = self.lm_head(x)
|
176 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
177 |
+
else:
|
178 |
+
# inference-time mini-optimization: only forward the lm_head on the very last position
|
179 |
+
logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
180 |
+
loss = None
|
181 |
+
|
182 |
+
return logits, loss
|
183 |
+
|
184 |
+
def crop_block_size(self, block_size):
|
185 |
+
# model surgery to decrease the block size if necessary
|
186 |
+
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
|
187 |
+
# but want to use a smaller block size for some smaller, simpler model
|
188 |
+
assert block_size <= self.config.block_size
|
189 |
+
self.config.block_size = block_size
|
190 |
+
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
|
191 |
+
for block in self.transformer.h:
|
192 |
+
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
|
193 |
+
|
194 |
+
@classmethod
|
195 |
+
def from_pretrained(cls, model_type, override_args=None):
|
196 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
197 |
+
override_args = override_args or {} # default to empty dict
|
198 |
+
# only dropout can be overridden see more notes below
|
199 |
+
assert all(k == 'dropout' for k in override_args)
|
200 |
+
from transformers import GPT2LMHeadModel
|
201 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
202 |
+
|
203 |
+
# n_layer, n_head and n_embd are determined from model_type
|
204 |
+
config_args = {
|
205 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
206 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
207 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
208 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
209 |
+
}[model_type]
|
210 |
+
# we can override the dropout rate
|
211 |
+
if 'dropout' in override_args:
|
212 |
+
config_args['dropout'] = override_args['dropout']
|
213 |
+
# block_size is always 1024 for GPT model checkpoints
|
214 |
+
# if one wants a lower block_size it has to be done through model surgery
|
215 |
+
# later, by calling crop_block_size()
|
216 |
+
|
217 |
+
# create a from-scratch initialized minGPT model
|
218 |
+
config = GPTConfig(block_size=1024, bias=True, **config_args) # note: force bias=True, as in gpt2 models
|
219 |
+
model = GPT(config)
|
220 |
+
sd = model.state_dict()
|
221 |
+
|
222 |
+
# init a huggingface/transformers model
|
223 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
224 |
+
sd_hf = model_hf.state_dict()
|
225 |
+
|
226 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
227 |
+
keys = [k for k in sd_hf if not k.endswith('attn.masked_bias')] # ignore these
|
228 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
229 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
230 |
+
# this means that we have to transpose these weights when we import them
|
231 |
+
assert len(keys) == len(sd)
|
232 |
+
for k in keys:
|
233 |
+
if any(k.endswith(w) for w in transposed):
|
234 |
+
# special treatment for the Conv1D weights we need to transpose
|
235 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
236 |
+
with torch.no_grad():
|
237 |
+
sd[k].copy_(sd_hf[k].t())
|
238 |
+
else:
|
239 |
+
# vanilla copy over the other parameters
|
240 |
+
assert sd_hf[k].shape == sd[k].shape
|
241 |
+
with torch.no_grad():
|
242 |
+
sd[k].copy_(sd_hf[k])
|
243 |
+
|
244 |
+
return model
|
245 |
+
|
246 |
+
def configure_optimizers(self, weight_decay, learning_rate, betas):
|
247 |
+
"""
|
248 |
+
This long function is unfortunately doing something very simple and is being very defensive:
|
249 |
+
We are separating out all parameters of the model into two buckets: those that will experience
|
250 |
+
weight decay for regularization and those that won't (biases, and layernorm/embedding weights).
|
251 |
+
We are then returning the PyTorch optimizer object.
|
252 |
+
"""
|
253 |
+
|
254 |
+
# separate out all parameters to those that will and won't experience regularizing weight decay
|
255 |
+
decay = set()
|
256 |
+
no_decay = set()
|
257 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
258 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, LayerNorm, torch.nn.Embedding)
|
259 |
+
for mn, m in self.named_modules():
|
260 |
+
for pn, p in m.named_parameters():
|
261 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
262 |
+
# random note: because named_modules and named_parameters are recursive
|
263 |
+
# we will see the same tensors p many many times. but doing it this way
|
264 |
+
# allows us to know which parent module any tensor p belongs to...
|
265 |
+
if pn.endswith('bias'):
|
266 |
+
# all biases will not be decayed
|
267 |
+
no_decay.add(fpn)
|
268 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
269 |
+
# weights of whitelist modules will be weight decayed
|
270 |
+
decay.add(fpn)
|
271 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
272 |
+
# weights of blacklist modules will NOT be weight decayed
|
273 |
+
no_decay.add(fpn)
|
274 |
+
|
275 |
+
# subtle: 'transformer.wte.weight' and 'lm_head.weight' are tied, so they
|
276 |
+
# will appear in the no_decay and decay sets respectively after the above.
|
277 |
+
# In addition, because named_parameters() doesn't return duplicates, it
|
278 |
+
# will only return the first occurence, key'd by 'transformer.wte.weight', below.
|
279 |
+
# so let's manually remove 'lm_head.weight' from decay set. This will include
|
280 |
+
# this tensor into optimization via transformer.wte.weight only, and not decayed.
|
281 |
+
decay.remove('lm_head.weight')
|
282 |
+
|
283 |
+
# validate that we considered every parameter
|
284 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
285 |
+
inter_params = decay & no_decay
|
286 |
+
union_params = decay | no_decay
|
287 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
288 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
289 |
+
% (str(param_dict.keys() - union_params), )
|
290 |
+
|
291 |
+
# create the pytorch optimizer object
|
292 |
+
optim_groups = [
|
293 |
+
{"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": weight_decay},
|
294 |
+
{"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
|
295 |
+
]
|
296 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas)
|
297 |
+
return optimizer
|
298 |
+
|
299 |
+
@torch.no_grad()
|
300 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
301 |
+
"""
|
302 |
+
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
303 |
+
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
304 |
+
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
305 |
+
"""
|
306 |
+
for _ in range(max_new_tokens):
|
307 |
+
# if the sequence context is growing too long we must crop it at block_size
|
308 |
+
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
|
309 |
+
# forward the model to get the logits for the index in the sequence
|
310 |
+
logits, _ = self(idx_cond)
|
311 |
+
# pluck the logits at the final step and scale by desired temperature
|
312 |
+
logits = logits[:, -1, :] / temperature
|
313 |
+
# optionally crop the logits to only the top k options
|
314 |
+
if top_k is not None:
|
315 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
316 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
317 |
+
# apply softmax to convert logits to (normalized) probabilities
|
318 |
+
probs = F.softmax(logits, dim=-1)
|
319 |
+
# sample from the distribution
|
320 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
321 |
+
# append sampled index to the running sequence and continue
|
322 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
323 |
+
|
324 |
+
return idx
|