omasteam's picture
Create app.py
a5fb800 verified
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import json
import re
import time
from datetime import datetime
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
# Initialize SecBERT model
MODEL_NAME = "jackaduma/SecBERT"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
# Threat patterns and keywords
THREAT_PATTERNS = {
"malware": ["trojan", "virus", "worm", "ransomware", "backdoor", "rootkit", "botnet", "keylogger"],
"phishing": ["click here", "urgent action", "verify account", "suspended", "limited time", "act now"],
"social_engineering": ["confidential", "insider", "exclusive", "secret", "don't tell", "between us"],
"data_breach": ["leaked", "exposed", "unauthorized access", "data dump", "credentials", "database"],
"network_attack": ["ddos", "injection", "exploit", "payload", "shell", "reverse", "buffer overflow"],
"apt": ["advanced persistent", "nation state", "targeted", "spear phishing", "zero day", "lateral movement"]
}
DEMO_EXAMPLES = [
"Urgent: Your account has been suspended! Click this link immediately to verify your identity and restore access.",
"Our new trojan variant uses advanced persistence mechanisms and lateral movement techniques to maintain access.",
"The APT group deployed custom malware with zero-day exploits targeting financial institutions.",
"Database containing 2.3 million user credentials was found exposed on an unprotected server.",
"Hi there! Hope you're having a great day. Looking forward to our meeting tomorrow at 2 PM.",
"The SQL injection vulnerability allows attackers to dump the entire user database via union select queries."
]
def analyze_threat_patterns(text):
"""Analyze text for cybersecurity threat patterns"""
threat_scores = {}
detected_threats = []
text_lower = text.lower()
for threat_type, keywords in THREAT_PATTERNS.items():
score = 0
found_keywords = []
for keyword in keywords:
if keyword in text_lower:
score += 1
found_keywords.append(keyword)
if score > 0:
threat_scores[threat_type] = {
"score": min(score / len(keywords), 1.0),
"keywords": found_keywords
}
detected_threats.append(threat_type)
return threat_scores, detected_threats
def get_threat_level(threat_scores):
"""Calculate overall threat level"""
if not threat_scores:
return "safe", 0.0
max_score = max(threat_info["score"] for threat_info in threat_scores.values())
if max_score >= 0.4:
return "critical", max_score
elif max_score >= 0.25:
return "high", max_score
elif max_score >= 0.15:
return "medium", max_score
else:
return "low", max_score
def create_threat_visualization(threat_scores, overall_level, overall_score):
"""Create interactive threat visualization"""
if not threat_scores:
# Safe visualization
fig = go.Figure(go.Indicator(
mode = "gauge+number",
value = 0,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "🟒 SAFE"},
gauge = {
'axis': {'range': [None, 1]},
'bar': {'color': "green"},
'steps': [{'range': [0, 1], 'color': "lightgray"}],
'threshold': {'line': {'color': "red", 'width': 4},
'thickness': 0.75, 'value': 0.8}
}
))
else:
# Threat level colors
colors = {
"safe": "green",
"low": "yellow",
"medium": "orange",
"high": "red",
"critical": "darkred"
}
# Main gauge
fig = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = overall_score,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': f"🚨 {overall_level.upper()} THREAT"},
delta = {'reference': 0.5},
gauge = {
'axis': {'range': [None, 1]},
'bar': {'color': colors[overall_level]},
'steps': [
{'range': [0, 0.15], 'color': "lightgreen"},
{'range': [0.15, 0.25], 'color': "yellow"},
{'range': [0.25, 0.4], 'color': "orange"},
{'range': [0.4, 1], 'color': "red"}
],
'threshold': {'line': {'color': "black", 'width': 4},
'thickness': 0.75, 'value': 0.8}
}
))
fig.update_layout(
height=300,
font={'color': "white", 'family': "Arial"},
paper_bgcolor="rgba(0,0,0,0.1)",
plot_bgcolor="rgba(0,0,0,0)"
)
return fig
def create_threat_breakdown(threat_scores):
"""Create threat category breakdown chart"""
if not threat_scores:
return None
categories = list(threat_scores.keys())
scores = [threat_scores[cat]["score"] for cat in categories]
colors = px.colors.qualitative.Set3
fig = go.Figure(data=[
go.Bar(
x=categories,
y=scores,
marker_color=colors[:len(categories)],
text=[f"{s:.1%}" for s in scores],
textposition='auto',
)
])
fig.update_layout(
title="Threat Categories Detected",
xaxis_title="Threat Type",
yaxis_title="Threat Score",
height=400,
font={'color': "white"},
paper_bgcolor="rgba(0,0,0,0.1)",
plot_bgcolor="rgba(0,0,0,0)"
)
return fig
def highlight_threats_in_text(text, threat_scores):
"""Highlight detected threats in the original text"""
if not threat_scores:
return text
highlighted_text = text
colors = ["#ff6b6b", "#4ecdc4", "#45b7d1", "#96ceb4", "#ffeaa7", "#dda0dd"]
color_idx = 0
for threat_type, threat_info in threat_scores.items():
color = colors[color_idx % len(colors)]
for keyword in threat_info["keywords"]:
pattern = re.compile(re.escape(keyword), re.IGNORECASE)
highlighted_text = pattern.sub(
f'<mark style="background-color: {color}; padding: 2px 4px; border-radius: 3px; font-weight: bold;">{keyword}</mark>',
highlighted_text
)
color_idx += 1
return highlighted_text
def analyze_cybersecurity_threat(text, progress=gr.Progress()):
"""Main threat analysis function"""
progress(0, desc="Initializing analysis...")
time.sleep(0.5)
progress(0.2, desc="Scanning for threat patterns...")
threat_scores, detected_threats = analyze_threat_patterns(text)
time.sleep(0.3)
progress(0.5, desc="Calculating threat levels...")
overall_level, overall_score = get_threat_level(threat_scores)
time.sleep(0.3)
progress(0.7, desc="Generating visualizations...")
gauge_chart = create_threat_visualization(threat_scores, overall_level, overall_score)
breakdown_chart = create_threat_breakdown(threat_scores)
time.sleep(0.3)
progress(0.9, desc="Highlighting threats in text...")
highlighted_text = highlight_threats_in_text(text, threat_scores)
# Generate detailed analysis
analysis_report = generate_analysis_report(threat_scores, overall_level, overall_score, detected_threats)
progress(1.0, desc="Analysis complete!")
return (
gauge_chart,
breakdown_chart if breakdown_chart else gr.update(visible=False),
f"<div style='padding: 15px; background: rgba(0,0,0,0.1); border-radius: 10px; color: white;'>{highlighted_text}</div>",
analysis_report,
gr.update(visible=True)
)
def generate_analysis_report(threat_scores, overall_level, overall_score, detected_threats):
"""Generate detailed threat analysis report"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
report = f"""
## πŸ” Cybersecurity Threat Analysis Report
**Timestamp:** {timestamp}
**Overall Threat Level:** {overall_level.upper()} ({overall_score:.1%})
### πŸ“Š Summary
"""
if not threat_scores:
report += """
βœ… **No cybersecurity threats detected!**
The analyzed text appears to be safe and doesn't contain indicators of:
- Malware or malicious software
- Phishing attempts
- Social engineering tactics
- Data breach indicators
- Network attack patterns
- Advanced Persistent Threat (APT) activities
"""
else:
report += f"""
⚠️ **{len(detected_threats)} threat categories detected:**
"""
for threat_type, threat_info in threat_scores.items():
score_percent = threat_info["score"] * 100
keywords = ", ".join(f"`{kw}`" for kw in threat_info["keywords"])
report += f"""
**{threat_type.upper()}** - {score_percent:.1f}% confidence
- Detected keywords: {keywords}
"""
report += """
### πŸ›‘οΈ Recommendations
"""
if overall_level == "critical":
report += "🚨 **IMMEDIATE ACTION REQUIRED** - This content shows strong indicators of cybersecurity threats"
elif overall_level == "high":
report += "⚠️ **HIGH PRIORITY** - Review and investigate this content immediately"
elif overall_level == "medium":
report += "πŸ”Ά **MODERATE CONCERN** - Monitor and verify the source of this content"
else:
report += "πŸ’‘ **LOW PRIORITY** - Minor indicators detected, routine monitoring recommended"
return report
# Custom CSS for the interface
custom_css = """
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white;
}
.gr-button {
background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
transition: all 0.3s ease !important;
}
.gr-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 5px 15px rgba(0,0,0,0.3) !important;
}
.gr-textbox textarea {
background: rgba(255,255,255,0.1) !important;
border: 2px solid rgba(255,255,255,0.3) !important;
color: white !important;
}
.gr-markdown {
color: white !important;
}
.threat-highlight {
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.7; }
100% { opacity: 1; }
}
"""
# Build the Gradio interface
with gr.Blocks(css=custom_css, title="🚨 Cyber Threat Radar") as demo:
gr.Markdown("""
# 🚨 Cyber Threat Radar Dashboard
### Powered by SecBERT - Real-time Cybersecurity Threat Detection
**Upload any text and watch our AI detect hidden cybersecurity threats in real-time!**
Try pasting emails, code snippets, news articles, or any suspicious content. Our advanced AI will analyze it for:
🦠 Malware indicators β€’ 🎣 Phishing attempts β€’ πŸ‘₯ Social engineering β€’ πŸ’Ύ Data breaches β€’ 🌐 Network attacks β€’ 🎯 APT activities
""")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="πŸ“ Enter text to analyze",
placeholder="Paste any text here - emails, articles, code, reports...",
lines=8,
max_lines=15
)
with gr.Row():
analyze_btn = gr.Button("πŸ” Analyze Threats", variant="primary", size="lg")
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
gr.Markdown("### 🎯 Try These Examples:")
example_buttons = []
for i, example in enumerate(DEMO_EXAMPLES):
btn = gr.Button(f"Example {i+1}: {example[:50]}...", variant="secondary", size="sm")
btn.click(lambda x=example: x, outputs=input_text)
example_buttons.append(btn)
with gr.Row():
with gr.Column():
threat_gauge = gr.Plot(label="🎯 Threat Level Gauge")
with gr.Column():
threat_breakdown = gr.Plot(label="πŸ“Š Threat Categories", visible=False)
with gr.Row():
highlighted_text = gr.HTML(label="πŸ” Text Analysis (Threats Highlighted)")
with gr.Row():
analysis_report = gr.Markdown(label="πŸ“‹ Detailed Analysis Report")
results_section = gr.Group(visible=False)
# Event handlers
analyze_btn.click(
analyze_cybersecurity_threat,
inputs=[input_text],
outputs=[threat_gauge, threat_breakdown, highlighted_text, analysis_report, results_section]
)
clear_btn.click(
lambda: ("", None, None, "", gr.update(visible=False)),
outputs=[input_text, threat_gauge, threat_breakdown, analysis_report, results_section]
)
if __name__ == "__main__":
demo.launch(
share=True,
show_error=True,
debug=True,
server_name="0.0.0.0",
server_port=7860
)