Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
import datetime
|
| 8 |
+
import random
|
| 9 |
+
|
| 10 |
+
# Load a pretrained model from Hugging Face Hub
|
| 11 |
+
model_name = "google/vit-base-patch16-224" # You can replace this with a food-specific model
|
| 12 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 13 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 14 |
+
|
| 15 |
+
# Map model outputs to food categories (this would need adjustment based on your specific model)
|
| 16 |
+
food_categories = {
|
| 17 |
+
0: "fresh_fruits",
|
| 18 |
+
1: "fresh_vegetables",
|
| 19 |
+
2: "spoiled_fruits",
|
| 20 |
+
3: "spoiled_vegetables",
|
| 21 |
+
4: "dairy",
|
| 22 |
+
5: "bakery",
|
| 23 |
+
6: "meat",
|
| 24 |
+
7: "other"
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
# Recipe database
|
| 28 |
+
def get_recipes(food_category, freshness):
|
| 29 |
+
recipes = {
|
| 30 |
+
'fresh_fruits': {
|
| 31 |
+
'fresh': ["Fresh Fruit Salad", "Fruit Smoothie", "Fruit Parfait"],
|
| 32 |
+
'moderate': ["Baked Fruits", "Fruit Compote", "Fruit Crumble"],
|
| 33 |
+
'aging': ["Fruit Jam", "Fruit Puree", "Infused Water"],
|
| 34 |
+
'spoiled': ["Compost", "Dispose responsibly"]
|
| 35 |
+
},
|
| 36 |
+
'fresh_vegetables': {
|
| 37 |
+
'fresh': ["Fresh Salad", "Vegetable Stir-fry", "Crudités"],
|
| 38 |
+
'moderate': ["Roasted Vegetables", "Vegetable Soup", "Steamed Vegetables"],
|
| 39 |
+
'aging': ["Vegetable Stock", "Compost", "Puree for Soups"],
|
| 40 |
+
'spoiled': ["Compost", "Dispose responsibly"]
|
| 41 |
+
},
|
| 42 |
+
'dairy': {
|
| 43 |
+
'fresh': ["Yogurt Parfait", "Cheese Plate", "Milk-based Smoothie"],
|
| 44 |
+
'moderate': ["Yogurt Marinade", "Pancakes", "Custard"],
|
| 45 |
+
'aging': ["Yogurt Cheese", "Baking buttermilk", "Cultured butter"],
|
| 46 |
+
'spoiled': ["Dispose responsibly", "Not recommended for consumption"]
|
| 47 |
+
},
|
| 48 |
+
'bakery': {
|
| 49 |
+
'fresh': ["Fresh Bread with Olive Oil", "Sandwiches", "Bread with Soup"],
|
| 50 |
+
'moderate': ["Croutons", "Bread Pudding", "French Toast"],
|
| 51 |
+
'aging': ["Bread Crumbs", "Bread-based Stuffing", "Bread Salad"],
|
| 52 |
+
'spoiled': ["Compost", "Bird Feed", "Dispose responsibly"]
|
| 53 |
+
},
|
| 54 |
+
'meat': {
|
| 55 |
+
'fresh': ["Grilled Meat", "Stew", "Stir-fry"],
|
| 56 |
+
'moderate': ["Slow-cooked Dish", "Meat Sauce", "Pot Pie"],
|
| 57 |
+
'aging': ["Not recommended for consumption", "Dispose responsibly"],
|
| 58 |
+
'spoiled': ["Dispose responsibly", "Not safe for consumption"]
|
| 59 |
+
},
|
| 60 |
+
'other': {
|
| 61 |
+
'fresh': ["Use soon", "Store properly"],
|
| 62 |
+
'moderate': ["Consider using in cooked dishes", "Check for signs of spoilage"],
|
| 63 |
+
'aging': ["Compost if possible", "Dispose responsibly"],
|
| 64 |
+
'spoiled': ["Dispose responsibly", "Not safe for consumption"]
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
return recipes.get(food_category, {}).get(freshness, ["No recipes available"])
|
| 69 |
+
|
| 70 |
+
# Waste log
|
| 71 |
+
waste_log = []
|
| 72 |
+
|
| 73 |
+
def predict_image(image):
|
| 74 |
+
# Preprocess the image
|
| 75 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 76 |
+
|
| 77 |
+
# Make prediction
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
outputs = model(**inputs)
|
| 80 |
+
logits = outputs.logits
|
| 81 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 82 |
+
|
| 83 |
+
# Get confidence scores
|
| 84 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)[0]
|
| 85 |
+
confidence_score = probabilities[predicted_class_idx].item()
|
| 86 |
+
|
| 87 |
+
# Map to food category (this is a simplification - you'd need to adjust based on your model)
|
| 88 |
+
food_category = food_categories.get(predicted_class_idx % len(food_categories), "other")
|
| 89 |
+
|
| 90 |
+
# Determine freshness based on confidence and category (this is a heuristic)
|
| 91 |
+
if confidence_score > 0.8:
|
| 92 |
+
freshness = 'fresh'
|
| 93 |
+
days_remaining = random.randint(3, 7)
|
| 94 |
+
elif confidence_score > 0.5:
|
| 95 |
+
freshness = 'moderate'
|
| 96 |
+
days_remaining = random.randint(1, 3)
|
| 97 |
+
else:
|
| 98 |
+
freshness = 'aging'
|
| 99 |
+
days_remaining = random.randint(0, 1)
|
| 100 |
+
|
| 101 |
+
# Special handling for categories that might indicate spoilage
|
| 102 |
+
if 'spoiled' in food_category:
|
| 103 |
+
freshness = 'spoiled'
|
| 104 |
+
days_remaining = 0
|
| 105 |
+
|
| 106 |
+
# Get recipe suggestions
|
| 107 |
+
recipes = get_recipes(food_category, freshness)
|
| 108 |
+
|
| 109 |
+
# Format results
|
| 110 |
+
result_html = f"""
|
| 111 |
+
<div style='padding: 10px; border-radius: 5px; background-color: #f0f8ff; margin-bottom: 10px;'>
|
| 112 |
+
<h3>Analysis Results</h3>
|
| 113 |
+
<p><b>Category:</b> {food_category.replace('_', ' ').title()}</p>
|
| 114 |
+
<p><b>Freshness:</b> {freshness.title()}</p>
|
| 115 |
+
<p><b>Confidence:</b> {confidence_score*100:.1f}%</p>
|
| 116 |
+
<p><b>Days Remaining:</b> {days_remaining}</p>
|
| 117 |
+
</div>
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
# Format recipes
|
| 121 |
+
recipes_html = "<h3>Recipe Suggestions</h3><ul>"
|
| 122 |
+
for recipe in recipes:
|
| 123 |
+
recipes_html += f"<li>{recipe}</li>"
|
| 124 |
+
recipes_html += "</ul>"
|
| 125 |
+
|
| 126 |
+
# Environmental impact
|
| 127 |
+
impact_html = f"""
|
| 128 |
+
<div style='padding: 10px; border-radius: 5px; background-color: #e8f5e9; margin-top: 10px;'>
|
| 129 |
+
<h3>Environmental Impact</h3>
|
| 130 |
+
<p>By properly managing this {food_category.replace('_', ' ')}, you could save approximately {random.uniform(0.1, 0.5):.2f} kg CO2 emissions.</p>
|
| 131 |
+
<p>Consider composting if the food is no longer edible.</p>
|
| 132 |
+
</div>
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
# Add to waste log
|
| 136 |
+
waste_log.append({
|
| 137 |
+
"item": food_category.replace('_', ' ').title(),
|
| 138 |
+
"category": food_category,
|
| 139 |
+
"date": datetime.datetime.now().strftime("%Y-%m-%d"),
|
| 140 |
+
"freshness": freshness,
|
| 141 |
+
"action": "analyzed",
|
| 142 |
+
"confidence": f"{confidence_score*100:.1f}%"
|
| 143 |
+
})
|
| 144 |
+
|
| 145 |
+
return result_html + recipes_html + impact_html
|
| 146 |
+
|
| 147 |
+
def update_waste_log():
|
| 148 |
+
if not waste_log:
|
| 149 |
+
return "<h3>No waste entries yet. Upload an image to get started!</h3>"
|
| 150 |
+
|
| 151 |
+
log_html = "<h3>Recent Waste Log</h3><table style='width:100%; border-collapse: collapse;'>"
|
| 152 |
+
log_html += "<tr style='background-color: #f2f2f2;'><th>Item</th><th>Category</th><th>Date</th><th>Freshness</th><th>Confidence</th></tr>"
|
| 153 |
+
|
| 154 |
+
for entry in waste_log[-5:]: # Show last 5 entries
|
| 155 |
+
log_html += f"<tr><td>{entry['item']}</td><td>{entry['category']}</td><td>{entry['date']}</td><td>{entry['freshness']}</td><td>{entry['confidence']}</td></tr>"
|
| 156 |
+
|
| 157 |
+
log_html += "</table>"
|
| 158 |
+
|
| 159 |
+
# Statistics
|
| 160 |
+
fresh_count = sum(1 for entry in waste_log if entry['freshness'] == 'fresh')
|
| 161 |
+
moderate_count = sum(1 for entry in waste_log if entry['freshness'] == 'moderate')
|
| 162 |
+
aging_count = sum(1 for entry in waste_log if entry['freshness'] == 'aging')
|
| 163 |
+
spoiled_count = sum(1 for entry in waste_log if entry['freshness'] == 'spoiled')
|
| 164 |
+
|
| 165 |
+
stats_html = f"""
|
| 166 |
+
<div style='margin-top: 20px;'>
|
| 167 |
+
<h3>Waste Statistics</h3>
|
| 168 |
+
<p>Fresh Items: {fresh_count}</p>
|
| 169 |
+
<p>Moderate Freshness: {moderate_count}</p>
|
| 170 |
+
<p>Aging Items: {aging_count}</p>
|
| 171 |
+
<p>Spoiled Items: {spoiled_count}</p>
|
| 172 |
+
</div>
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
return log_html + stats_html
|
| 176 |
+
|
| 177 |
+
# Create Gradio interface
|
| 178 |
+
with gr.Blocks(title="Food Waste Manager", theme=gr.themes.Soft()) as demo:
|
| 179 |
+
gr.Markdown("# 🍃 Smart Food Waste Manager")
|
| 180 |
+
gr.Markdown("Upload an image of food to analyze its freshness and get recipe suggestions to reduce waste!")
|
| 181 |
+
|
| 182 |
+
with gr.Row():
|
| 183 |
+
with gr.Column():
|
| 184 |
+
image_input = gr.Image(label="Upload Food Image", type="pil")
|
| 185 |
+
analyze_btn = gr.Button("Analyze Food", variant="primary")
|
| 186 |
+
|
| 187 |
+
with gr.Column():
|
| 188 |
+
analysis_output = gr.HTML(label="Analysis Results")
|
| 189 |
+
|
| 190 |
+
with gr.Row():
|
| 191 |
+
waste_log_output = gr.HTML()
|
| 192 |
+
|
| 193 |
+
# Set up event handlers
|
| 194 |
+
analyze_btn.click(
|
| 195 |
+
fn=predict_image,
|
| 196 |
+
inputs=image_input,
|
| 197 |
+
outputs=analysis_output
|
| 198 |
+
).then(
|
| 199 |
+
fn=update_waste_log,
|
| 200 |
+
inputs=None,
|
| 201 |
+
outputs=waste_log_output
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
# Initialize waste log
|
| 205 |
+
demo.load(update_waste_log, None, waste_log_output)
|
| 206 |
+
|
| 207 |
+
if __name__ == "__main__":
|
| 208 |
+
demo.launch()
|