Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Add GPT-4 & human eval tab
Browse files- .gitignore +4 -0
- app.py +255 -99
- content.py +26 -1
- elo_utils.py +175 -0
- utils.py +4 -20
- visualizations.py +137 -0
.gitignore
CHANGED
|
@@ -4,3 +4,7 @@ __pycache__/
|
|
| 4 |
.env
|
| 5 |
.ipynb_checkpoints
|
| 6 |
*ipynb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
.env
|
| 5 |
.ipynb_checkpoints
|
| 6 |
*ipynb
|
| 7 |
+
|
| 8 |
+
gpt_4_evals/
|
| 9 |
+
human_evals/
|
| 10 |
+
model_counts.html
|
app.py
CHANGED
|
@@ -1,20 +1,24 @@
|
|
| 1 |
-
import os
|
| 2 |
import json
|
|
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
-
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
import pandas as pd
|
| 8 |
-
|
| 9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 10 |
-
from
|
| 11 |
-
from huggingface_hub import Repository, HfApi
|
| 12 |
from transformers import AutoConfig
|
|
|
|
|
|
|
|
|
|
| 13 |
from utils import get_eval_results_dicts, make_clickable_model
|
| 14 |
|
| 15 |
# clone / pull the lmeh eval data
|
| 16 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 17 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
|
|
|
|
|
|
| 18 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", None))
|
| 19 |
|
| 20 |
api = HfApi()
|
|
@@ -56,6 +60,27 @@ if H4_TOKEN:
|
|
| 56 |
requested_models_dir = "./evals/eval_requests"
|
| 57 |
requested_models = get_all_requested_models(requested_models_dir)
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
# parse the results
|
| 61 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
|
@@ -100,6 +125,16 @@ BENCHMARK_COLS = [
|
|
| 100 |
"TruthfulQA (0-shot) ⬆️",
|
| 101 |
]
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
def has_no_nan_values(df, columns):
|
| 105 |
return df[columns].notna().all(axis=1)
|
|
@@ -213,6 +248,42 @@ def get_evaluation_queue_df():
|
|
| 213 |
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
|
| 214 |
|
| 215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
original_df = get_leaderboard_df()
|
| 217 |
leaderboard_df = original_df.copy()
|
| 218 |
(
|
|
@@ -220,6 +291,14 @@ leaderboard_df = original_df.copy()
|
|
| 220 |
running_eval_queue_df,
|
| 221 |
pending_eval_queue_df,
|
| 222 |
) = get_evaluation_queue_df()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
|
| 225 |
def is_model_on_hub(model_name, revision) -> bool:
|
|
@@ -359,12 +438,11 @@ custom_css = """
|
|
| 359 |
}
|
| 360 |
|
| 361 |
/* Hides the final column */
|
| 362 |
-
table td:last-child,
|
| 363 |
-
table th:last-child {
|
| 364 |
display: none;
|
| 365 |
}
|
| 366 |
|
| 367 |
-
|
| 368 |
/* Limit the width of the first column so that names don't expand too much */
|
| 369 |
table td:first-child,
|
| 370 |
table th:first-child {
|
|
@@ -373,13 +451,30 @@ table th:first-child {
|
|
| 373 |
white-space: nowrap;
|
| 374 |
}
|
| 375 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
"""
|
| 377 |
|
| 378 |
|
| 379 |
demo = gr.Blocks(css=custom_css)
|
| 380 |
with demo:
|
| 381 |
gr.HTML(TITLE)
|
| 382 |
-
gr.
|
|
|
|
| 383 |
|
| 384 |
with gr.Row():
|
| 385 |
with gr.Column():
|
|
@@ -393,97 +488,158 @@ with demo:
|
|
| 393 |
with gr.Accordion("✨ CHANGELOG", open=False):
|
| 394 |
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")
|
| 395 |
|
| 396 |
-
with gr.
|
| 397 |
-
|
| 398 |
-
placeholder="🔍 Search your model and press ENTER...",
|
| 399 |
-
show_label=False,
|
| 400 |
-
elem_id="search-bar",
|
| 401 |
-
)
|
| 402 |
-
|
| 403 |
-
leaderboard_table = gr.components.Dataframe(
|
| 404 |
-
value=leaderboard_df,
|
| 405 |
-
headers=COLS,
|
| 406 |
-
datatype=TYPES,
|
| 407 |
-
max_rows=5,
|
| 408 |
-
elem_id="leaderboard-table",
|
| 409 |
-
)
|
| 410 |
-
|
| 411 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 412 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 413 |
-
value=original_df, headers=COLS, datatype=TYPES, max_rows=5, visible=False
|
| 414 |
-
)
|
| 415 |
-
|
| 416 |
-
search_bar.submit(
|
| 417 |
-
search_table,
|
| 418 |
-
[hidden_leaderboard_table_for_search, search_bar],
|
| 419 |
-
leaderboard_table,
|
| 420 |
-
)
|
| 421 |
-
|
| 422 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 423 |
-
|
| 424 |
-
with gr.Accordion("✅ Finished Evaluations", open=False):
|
| 425 |
-
finished_eval_table = gr.components.Dataframe(
|
| 426 |
-
value=finished_eval_queue_df,
|
| 427 |
-
headers=EVAL_COLS,
|
| 428 |
-
datatype=EVAL_TYPES,
|
| 429 |
-
max_rows=5,
|
| 430 |
-
)
|
| 431 |
-
with gr.Accordion("🔄 Running Evaluation Queue", open=False):
|
| 432 |
-
running_eval_table = gr.components.Dataframe(
|
| 433 |
-
value=running_eval_queue_df,
|
| 434 |
-
headers=EVAL_COLS,
|
| 435 |
-
datatype=EVAL_TYPES,
|
| 436 |
-
max_rows=5,
|
| 437 |
-
)
|
| 438 |
-
|
| 439 |
-
with gr.Accordion("⏳ Pending Evaluation Queue", open=False):
|
| 440 |
-
pending_eval_table = gr.components.Dataframe(
|
| 441 |
-
value=pending_eval_queue_df,
|
| 442 |
-
headers=EVAL_COLS,
|
| 443 |
-
datatype=EVAL_TYPES,
|
| 444 |
-
max_rows=5,
|
| 445 |
-
)
|
| 446 |
-
|
| 447 |
-
refresh_button = gr.Button("Refresh")
|
| 448 |
-
refresh_button.click(
|
| 449 |
-
refresh,
|
| 450 |
-
inputs=[],
|
| 451 |
-
outputs=[
|
| 452 |
-
leaderboard_table,
|
| 453 |
-
finished_eval_table,
|
| 454 |
-
running_eval_table,
|
| 455 |
-
pending_eval_table,
|
| 456 |
-
],
|
| 457 |
-
)
|
| 458 |
-
|
| 459 |
-
with gr.Accordion("Submit a new model for evaluation"):
|
| 460 |
-
with gr.Row():
|
| 461 |
-
with gr.Column():
|
| 462 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
| 463 |
-
revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
|
| 464 |
-
|
| 465 |
with gr.Column():
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
scheduler = BackgroundScheduler()
|
| 489 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
+
import os
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
import pandas as pd
|
|
|
|
| 9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 10 |
+
from huggingface_hub import HfApi, Repository
|
|
|
|
| 11 |
from transformers import AutoConfig
|
| 12 |
+
|
| 13 |
+
from content import *
|
| 14 |
+
from elo_utils import get_elo_plots, get_elo_results_dicts
|
| 15 |
from utils import get_eval_results_dicts, make_clickable_model
|
| 16 |
|
| 17 |
# clone / pull the lmeh eval data
|
| 18 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 19 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
| 20 |
+
HUMAN_EVAL_REPO = "HuggingFaceH4/scale-human-eval"
|
| 21 |
+
GPT_4_EVAL_REPO = "HuggingFaceH4/open_llm_leaderboard_oai_evals"
|
| 22 |
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", None))
|
| 23 |
|
| 24 |
api = HfApi()
|
|
|
|
| 60 |
requested_models_dir = "./evals/eval_requests"
|
| 61 |
requested_models = get_all_requested_models(requested_models_dir)
|
| 62 |
|
| 63 |
+
human_eval_repo = None
|
| 64 |
+
if H4_TOKEN and not os.path.isdir("./human_evals"):
|
| 65 |
+
print("Pulling human evaluation repo")
|
| 66 |
+
human_eval_repo = Repository(
|
| 67 |
+
local_dir="./human_evals/",
|
| 68 |
+
clone_from=HUMAN_EVAL_REPO,
|
| 69 |
+
use_auth_token=H4_TOKEN,
|
| 70 |
+
repo_type="dataset",
|
| 71 |
+
)
|
| 72 |
+
human_eval_repo.git_pull()
|
| 73 |
+
|
| 74 |
+
gpt_4_eval_repo = None
|
| 75 |
+
if H4_TOKEN and not os.path.isdir("./gpt_4_evals"):
|
| 76 |
+
print("Pulling GPT-4 evaluation repo")
|
| 77 |
+
gpt_4_eval_repo = Repository(
|
| 78 |
+
local_dir="./gpt_4_evals/",
|
| 79 |
+
clone_from=GPT_4_EVAL_REPO,
|
| 80 |
+
use_auth_token=H4_TOKEN,
|
| 81 |
+
repo_type="dataset",
|
| 82 |
+
)
|
| 83 |
+
gpt_4_eval_repo.git_pull()
|
| 84 |
|
| 85 |
# parse the results
|
| 86 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
|
|
|
| 125 |
"TruthfulQA (0-shot) ⬆️",
|
| 126 |
]
|
| 127 |
|
| 128 |
+
ELO_COLS = [
|
| 129 |
+
"Model",
|
| 130 |
+
"GPT-4 (all)",
|
| 131 |
+
"Human (all)",
|
| 132 |
+
"Human (instruct)",
|
| 133 |
+
"Human (code-instruct)",
|
| 134 |
+
]
|
| 135 |
+
ELO_TYPES = ["markdown", "number", "number", "number", "number"]
|
| 136 |
+
ELO_SORT_COL = "GPT-4 (all)"
|
| 137 |
+
|
| 138 |
|
| 139 |
def has_no_nan_values(df, columns):
|
| 140 |
return df[columns].notna().all(axis=1)
|
|
|
|
| 248 |
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
|
| 249 |
|
| 250 |
|
| 251 |
+
def get_elo_leaderboard(df_instruct, df_code_instruct, tie_allowed=False):
|
| 252 |
+
if human_eval_repo:
|
| 253 |
+
print("Pulling human_eval_repo changes")
|
| 254 |
+
human_eval_repo.git_pull()
|
| 255 |
+
|
| 256 |
+
all_data = get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed)
|
| 257 |
+
dataframe = pd.DataFrame.from_records(all_data)
|
| 258 |
+
dataframe = dataframe.sort_values(by=ELO_SORT_COL, ascending=False)
|
| 259 |
+
dataframe = dataframe[ELO_COLS]
|
| 260 |
+
return dataframe
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
def get_elo_elements():
|
| 264 |
+
df_instruct = pd.read_json("human_evals/without_code.json")
|
| 265 |
+
df_code_instruct = pd.read_json("human_evals/with_code.json")
|
| 266 |
+
|
| 267 |
+
elo_leaderboard = get_elo_leaderboard(
|
| 268 |
+
df_instruct, df_code_instruct, tie_allowed=False
|
| 269 |
+
)
|
| 270 |
+
elo_leaderboard_with_tie_allowed = get_elo_leaderboard(
|
| 271 |
+
df_instruct, df_code_instruct, tie_allowed=True
|
| 272 |
+
)
|
| 273 |
+
plot_1, plot_2, plot_3, plot_4 = get_elo_plots(
|
| 274 |
+
df_instruct, df_code_instruct, tie_allowed=False
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
return (
|
| 278 |
+
elo_leaderboard,
|
| 279 |
+
elo_leaderboard_with_tie_allowed,
|
| 280 |
+
plot_1,
|
| 281 |
+
plot_2,
|
| 282 |
+
plot_3,
|
| 283 |
+
plot_4,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
original_df = get_leaderboard_df()
|
| 288 |
leaderboard_df = original_df.copy()
|
| 289 |
(
|
|
|
|
| 291 |
running_eval_queue_df,
|
| 292 |
pending_eval_queue_df,
|
| 293 |
) = get_evaluation_queue_df()
|
| 294 |
+
(
|
| 295 |
+
elo_leaderboard,
|
| 296 |
+
elo_leaderboard_with_tie_allowed,
|
| 297 |
+
plot_1,
|
| 298 |
+
plot_2,
|
| 299 |
+
plot_3,
|
| 300 |
+
plot_4,
|
| 301 |
+
) = get_elo_elements()
|
| 302 |
|
| 303 |
|
| 304 |
def is_model_on_hub(model_name, revision) -> bool:
|
|
|
|
| 438 |
}
|
| 439 |
|
| 440 |
/* Hides the final column */
|
| 441 |
+
#llm-benchmark-tab-table table td:last-child,
|
| 442 |
+
#llm-benchmark-tab-table table th:last-child {
|
| 443 |
display: none;
|
| 444 |
}
|
| 445 |
|
|
|
|
| 446 |
/* Limit the width of the first column so that names don't expand too much */
|
| 447 |
table td:first-child,
|
| 448 |
table th:first-child {
|
|
|
|
| 451 |
white-space: nowrap;
|
| 452 |
}
|
| 453 |
|
| 454 |
+
.tab-buttons button {
|
| 455 |
+
font-size: 16px;
|
| 456 |
+
}
|
| 457 |
+
|
| 458 |
+
#scale-logo {
|
| 459 |
+
border-style: none !important;
|
| 460 |
+
box-shadow: none;
|
| 461 |
+
display: block;
|
| 462 |
+
margin-left: auto;
|
| 463 |
+
margin-right: auto;
|
| 464 |
+
max-width: 600px;
|
| 465 |
+
}
|
| 466 |
+
|
| 467 |
+
#scale-logo .download {
|
| 468 |
+
display: none;
|
| 469 |
+
}
|
| 470 |
"""
|
| 471 |
|
| 472 |
|
| 473 |
demo = gr.Blocks(css=custom_css)
|
| 474 |
with demo:
|
| 475 |
gr.HTML(TITLE)
|
| 476 |
+
with gr.Row():
|
| 477 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 478 |
|
| 479 |
with gr.Row():
|
| 480 |
with gr.Column():
|
|
|
|
| 488 |
with gr.Accordion("✨ CHANGELOG", open=False):
|
| 489 |
changelog = gr.Markdown(CHANGELOG_TEXT, elem_id="changelog-text")
|
| 490 |
|
| 491 |
+
with gr.Tabs(elem_classes="tab-buttons"):
|
| 492 |
+
with gr.TabItem("📊 LLM Benchmarks", elem_id="llm-benchmark-tab-table"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
with gr.Column():
|
| 494 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 495 |
+
with gr.Box(elem_id="search-bar-table-box"):
|
| 496 |
+
search_bar = gr.Textbox(
|
| 497 |
+
placeholder="🔍 Search your model and press ENTER...",
|
| 498 |
+
show_label=False,
|
| 499 |
+
elem_id="search-bar",
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
leaderboard_table = gr.components.Dataframe(
|
| 503 |
+
value=leaderboard_df,
|
| 504 |
+
headers=COLS,
|
| 505 |
+
datatype=TYPES,
|
| 506 |
+
max_rows=5,
|
| 507 |
+
elem_id="leaderboard-table",
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 511 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 512 |
+
value=original_df,
|
| 513 |
+
headers=COLS,
|
| 514 |
+
datatype=TYPES,
|
| 515 |
+
max_rows=5,
|
| 516 |
+
visible=False,
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
search_bar.submit(
|
| 520 |
+
search_table,
|
| 521 |
+
[hidden_leaderboard_table_for_search, search_bar],
|
| 522 |
+
leaderboard_table,
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
with gr.Row():
|
| 526 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 527 |
+
|
| 528 |
+
with gr.Accordion("✅ Finished Evaluations", open=False):
|
| 529 |
+
with gr.Row():
|
| 530 |
+
finished_eval_table = gr.components.Dataframe(
|
| 531 |
+
value=finished_eval_queue_df,
|
| 532 |
+
headers=EVAL_COLS,
|
| 533 |
+
datatype=EVAL_TYPES,
|
| 534 |
+
max_rows=5,
|
| 535 |
+
)
|
| 536 |
+
with gr.Accordion("🔄 Running Evaluation Queue", open=False):
|
| 537 |
+
with gr.Row():
|
| 538 |
+
running_eval_table = gr.components.Dataframe(
|
| 539 |
+
value=running_eval_queue_df,
|
| 540 |
+
headers=EVAL_COLS,
|
| 541 |
+
datatype=EVAL_TYPES,
|
| 542 |
+
max_rows=5,
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
with gr.Accordion("⏳ Pending Evaluation Queue", open=False):
|
| 546 |
+
with gr.Row():
|
| 547 |
+
pending_eval_table = gr.components.Dataframe(
|
| 548 |
+
value=pending_eval_queue_df,
|
| 549 |
+
headers=EVAL_COLS,
|
| 550 |
+
datatype=EVAL_TYPES,
|
| 551 |
+
max_rows=5,
|
| 552 |
+
)
|
| 553 |
+
|
| 554 |
+
with gr.Row():
|
| 555 |
+
refresh_button = gr.Button("Refresh")
|
| 556 |
+
refresh_button.click(
|
| 557 |
+
refresh,
|
| 558 |
+
inputs=[],
|
| 559 |
+
outputs=[
|
| 560 |
+
leaderboard_table,
|
| 561 |
+
finished_eval_table,
|
| 562 |
+
running_eval_table,
|
| 563 |
+
pending_eval_table,
|
| 564 |
+
],
|
| 565 |
+
)
|
| 566 |
+
with gr.Accordion("Submit a new model for evaluation"):
|
| 567 |
+
with gr.Row():
|
| 568 |
+
with gr.Column():
|
| 569 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
| 570 |
+
revision_name_textbox = gr.Textbox(
|
| 571 |
+
label="revision", placeholder="main"
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
with gr.Column():
|
| 575 |
+
is_8bit_toggle = gr.Checkbox(
|
| 576 |
+
False, label="8 bit eval", visible=not IS_PUBLIC
|
| 577 |
+
)
|
| 578 |
+
private = gr.Checkbox(
|
| 579 |
+
False, label="Private", visible=not IS_PUBLIC
|
| 580 |
+
)
|
| 581 |
+
is_delta_weight = gr.Checkbox(False, label="Delta weights")
|
| 582 |
+
base_model_name_textbox = gr.Textbox(
|
| 583 |
+
label="base model (for delta)"
|
| 584 |
+
)
|
| 585 |
+
|
| 586 |
+
submit_button = gr.Button("Submit Eval")
|
| 587 |
+
submission_result = gr.Markdown()
|
| 588 |
+
submit_button.click(
|
| 589 |
+
add_new_eval,
|
| 590 |
+
[
|
| 591 |
+
model_name_textbox,
|
| 592 |
+
base_model_name_textbox,
|
| 593 |
+
revision_name_textbox,
|
| 594 |
+
is_8bit_toggle,
|
| 595 |
+
private,
|
| 596 |
+
is_delta_weight,
|
| 597 |
+
],
|
| 598 |
+
submission_result,
|
| 599 |
+
)
|
| 600 |
+
with gr.TabItem(
|
| 601 |
+
"🧑⚖️ Human & GPT-4 Evaluations 🤖", elem_id="human-gpt-tab-table"
|
| 602 |
+
):
|
| 603 |
+
with gr.Row():
|
| 604 |
+
with gr.Column(scale=2):
|
| 605 |
+
gr.Markdown(HUMAN_GPT_EVAL_TEXT, elem_classes="markdown-text")
|
| 606 |
+
with gr.Column(scale=1):
|
| 607 |
+
gr.Image(
|
| 608 |
+
"scale-hf-logo.png", elem_id="scale-logo", show_label=False
|
| 609 |
+
)
|
| 610 |
+
gr.Markdown("## No tie")
|
| 611 |
+
elo_leaderboard_table = gr.components.Dataframe(
|
| 612 |
+
value=elo_leaderboard,
|
| 613 |
+
headers=ELO_COLS,
|
| 614 |
+
datatype=ELO_TYPES,
|
| 615 |
+
max_rows=5,
|
| 616 |
+
)
|
| 617 |
+
|
| 618 |
+
gr.Markdown("## Tie allowed*")
|
| 619 |
+
elo_leaderboard_table_with_tie_allowed = gr.components.Dataframe(
|
| 620 |
+
value=elo_leaderboard_with_tie_allowed,
|
| 621 |
+
headers=ELO_COLS,
|
| 622 |
+
datatype=ELO_TYPES,
|
| 623 |
+
max_rows=5,
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
gr.Markdown("\* Results when the scores of 4 and 5 were treated as ties.", elem_classes="markdown-text")
|
| 627 |
+
# with gr.Box():
|
| 628 |
+
# visualization_title = gr.HTML(VISUALIZATION_TITLE)
|
| 629 |
+
# with gr.Row():
|
| 630 |
+
# with gr.Column():
|
| 631 |
+
# gr.Markdown(f"#### Figure 1: {PLOT_1_TITLE}")
|
| 632 |
+
# plot_1 = gr.Plot(plot_1, show_label=False)
|
| 633 |
+
# with gr.Column():
|
| 634 |
+
# gr.Markdown(f"#### Figure 2: {PLOT_2_TITLE}")
|
| 635 |
+
# plot_2 = gr.Plot(plot_2, show_label=False)
|
| 636 |
+
# with gr.Row():
|
| 637 |
+
# with gr.Column():
|
| 638 |
+
# gr.Markdown(f"#### Figure 3: {PLOT_3_TITLE}")
|
| 639 |
+
# plot_3 = gr.Plot(plot_3, show_label=False)
|
| 640 |
+
# with gr.Column():
|
| 641 |
+
# gr.Markdown(f"#### Figure 4: {PLOT_4_TITLE}")
|
| 642 |
+
# plot_4 = gr.Plot(plot_4, show_label=False)
|
| 643 |
|
| 644 |
scheduler = BackgroundScheduler()
|
| 645 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
content.py
CHANGED
|
@@ -1,4 +1,7 @@
|
|
| 1 |
CHANGELOG_TEXT = f"""
|
|
|
|
|
|
|
|
|
|
| 2 |
## [2023-06-05]
|
| 3 |
- Increase concurrent thread count to 40
|
| 4 |
- Search models on ENTER
|
|
@@ -47,7 +50,11 @@ INTRODUCTION_TEXT = f"""
|
|
| 47 |
|
| 48 |
🤗 A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as LLaMa.
|
| 49 |
|
| 50 |
-
📈
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
- <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
|
| 52 |
- <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
| 53 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
|
@@ -56,6 +63,15 @@ INTRODUCTION_TEXT = f"""
|
|
| 56 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
| 57 |
"""
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
EVALUATION_QUEUE_TEXT = f"""
|
| 60 |
# Evaluation Queue for the 🤗 Open LLM Leaderboard, these models will be automatically evaluated on the 🤗 cluster
|
| 61 |
"""
|
|
@@ -128,3 +144,12 @@ CITATION_BUTTON_TEXT = r"""@misc{open-llm-leaderboard,
|
|
| 128 |
primaryClass={cs.CL}
|
| 129 |
}"""
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
CHANGELOG_TEXT = f"""
|
| 2 |
+
## [2023-06-12]
|
| 3 |
+
- Add Human & GPT-4 Evaluations
|
| 4 |
+
|
| 5 |
## [2023-06-05]
|
| 6 |
- Increase concurrent thread count to 40
|
| 7 |
- Search models on ENTER
|
|
|
|
| 50 |
|
| 51 |
🤗 A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as LLaMa.
|
| 52 |
|
| 53 |
+
📈 In the **first tab (LLM Benchmarks)**, we evaluate models on 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks. In the **second tab (Human & GPT Evaluations)**, the evaluations are performed by having humans and GPT-4 compare completions from a set of popular open-source language models (LLMs) on a secret set of instruction prompts.
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
LLM_BENCHMARKS_TEXT = f"""
|
| 57 |
+
Evaluation is performed against 4 popular benchmarks:
|
| 58 |
- <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
|
| 59 |
- <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
|
| 60 |
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
|
|
|
|
| 63 |
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.
|
| 64 |
"""
|
| 65 |
|
| 66 |
+
HUMAN_GPT_EVAL_TEXT = f"""
|
| 67 |
+
Evaluation is performed by having humans and GPT-4 compare completions from a set of popular open-source language models (LLMs) on a secret set of instruction prompts. The prompts cover tasks such as brainstorming, creative generation, commonsense reasoning, open question answering, summarization, and code generation. Comparisons are made by humans and a model on a 1-8 Likert scale, where the labeler is required to choose a preference each time. Using these preferences, we create bootstrapped Elo rankings.
|
| 68 |
+
|
| 69 |
+
We collaborated with **Scale AI** to generate the completions using a professional data labeling workforce on their platform, [following the labeling instructions found here](https://docs.google.com/document/d/1c5-96Lj-UH4lzKjLvJ_MRQaVMjtoEXTYA4dvoAYVCHc/edit?usp=sharing). To understand the evaluation of popular models, we also had GPT-4 label the completions using this prompt.
|
| 70 |
+
|
| 71 |
+
For more information on the calibration and initiation of these measurements, please refer to the [announcement blog post](https://huggingface.co/blog/llm-leaderboard). We would like to express our gratitude to **LMSYS** for providing a [useful notebook](https://colab.research.google.com/drive/1lAQ9cKVErXI1rEYq7hTKNaCQ5Q8TzrI5?usp=sharing) for computing Elo estimates and plots.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
|
| 75 |
EVALUATION_QUEUE_TEXT = f"""
|
| 76 |
# Evaluation Queue for the 🤗 Open LLM Leaderboard, these models will be automatically evaluated on the 🤗 cluster
|
| 77 |
"""
|
|
|
|
| 144 |
primaryClass={cs.CL}
|
| 145 |
}"""
|
| 146 |
|
| 147 |
+
VISUALIZATION_TITLE = """<h1 align="center" id="space-title">📊 Visualizations</h1>"""
|
| 148 |
+
|
| 149 |
+
PLOT_1_TITLE = "Fraction of Model A Wins for All Non-tied A vs. B Comparisons"
|
| 150 |
+
|
| 151 |
+
PLOT_2_TITLE = "Comparison Count of Each Combination of Models (not allowing ties)"
|
| 152 |
+
|
| 153 |
+
PLOT_3_TITLE = "Elo Estimates with error bars (ties allowed)"
|
| 154 |
+
|
| 155 |
+
PLOT_4_TITLE = "Fraction of Model A Wins for All Non-tied A vs. B Comparisons"
|
elo_utils.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Dict, List
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
|
| 9 |
+
from content import PLOT_1_TITLE, PLOT_2_TITLE, PLOT_3_TITLE, PLOT_4_TITLE
|
| 10 |
+
from utils import make_clickable_model
|
| 11 |
+
from visualizations import (get_bootstrap_result, switch_model_a_b,
|
| 12 |
+
visualize_battle_count, visualize_bootstrap_scores,
|
| 13 |
+
visualize_pairwise_win_fraction,
|
| 14 |
+
visualize_rating_count)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclass
|
| 18 |
+
class EloEvalResult:
|
| 19 |
+
model: str
|
| 20 |
+
gpt_4_all: int
|
| 21 |
+
human_all: int
|
| 22 |
+
human_instruct: int
|
| 23 |
+
human_code_instruct: int
|
| 24 |
+
tie_allowed: bool
|
| 25 |
+
|
| 26 |
+
def to_dict(self):
|
| 27 |
+
base_model = f"{self.model}"
|
| 28 |
+
data_dict = {}
|
| 29 |
+
data_dict["Model"] = make_clickable_model(base_model)
|
| 30 |
+
data_dict["GPT-4 (all)"] = self.gpt_4_all
|
| 31 |
+
data_dict["Human (all)"] = self.human_all
|
| 32 |
+
data_dict["Human (instruct)"] = self.human_instruct
|
| 33 |
+
data_dict["Human (code-instruct)"] = self.human_code_instruct
|
| 34 |
+
|
| 35 |
+
return data_dict
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def create_eval_df(df, tie_allowed):
|
| 39 |
+
responses = []
|
| 40 |
+
for _, row in df.iterrows():
|
| 41 |
+
if row["status"] == "canceled":
|
| 42 |
+
continue
|
| 43 |
+
|
| 44 |
+
rating = row["response"]["annotations"]["Preference"]
|
| 45 |
+
if rating == "NaN":
|
| 46 |
+
continue
|
| 47 |
+
|
| 48 |
+
scores = row["response"]["responses"]
|
| 49 |
+
if any(s["Preference"] == "" for s in scores):
|
| 50 |
+
continue
|
| 51 |
+
|
| 52 |
+
response = {
|
| 53 |
+
"id": row["task_id"],
|
| 54 |
+
"prompt": row["params"]["templateVariables"]["prompt"],
|
| 55 |
+
"model_a": row["params"]["templateVariables"]["modela"],
|
| 56 |
+
"model_b": row["params"]["templateVariables"]["modelb"],
|
| 57 |
+
"response_a": row["params"]["templateVariables"]["response1"],
|
| 58 |
+
"response_b": row["params"]["templateVariables"]["response2"],
|
| 59 |
+
"rating": int(rating),
|
| 60 |
+
"ratings": [np.array([s["Preference"] for s in scores], dtype=np.int32)],
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
if tie_allowed:
|
| 64 |
+
response["win"] = "model_a" if response["rating"] < 4 else "model_b" if response["rating"] > 5 else "tie"
|
| 65 |
+
else:
|
| 66 |
+
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
|
| 67 |
+
|
| 68 |
+
responses.append(response)
|
| 69 |
+
|
| 70 |
+
return pd.DataFrame(responses)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def create_eval_df_for_gpt(df, tie_allowed):
|
| 74 |
+
responses = []
|
| 75 |
+
for _, row in df.iterrows():
|
| 76 |
+
response = {
|
| 77 |
+
"id": row["review_id"],
|
| 78 |
+
"prompt": row["question"],
|
| 79 |
+
"model_a": row["model1"],
|
| 80 |
+
"model_b": row["model2"],
|
| 81 |
+
"response_a": row["answer1"],
|
| 82 |
+
"response_b": row["answer2"],
|
| 83 |
+
"rating": row["score"][0],
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
if tie_allowed:
|
| 87 |
+
response["win"] = "model_a" if response["rating"] < 4 else "model_b" if response["rating"] > 5 else "tie"
|
| 88 |
+
else:
|
| 89 |
+
response["win"] = "model_a" if response["rating"] < 5 else "model_b"
|
| 90 |
+
|
| 91 |
+
responses.append(response)
|
| 92 |
+
|
| 93 |
+
return pd.DataFrame(responses)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Compute the Elo rating for each model
|
| 97 |
+
def compute_elo(df, k=32, scale=400, base=10, initial_rating=1000):
|
| 98 |
+
rating = defaultdict(lambda: initial_rating)
|
| 99 |
+
|
| 100 |
+
for _, model_a, model_b, win in df[["model_a", "model_b", "win"]].itertuples():
|
| 101 |
+
ra = rating[model_a]
|
| 102 |
+
rb = rating[model_b]
|
| 103 |
+
ea = 1 / (1 + base ** ((rb - ra) / scale))
|
| 104 |
+
eb = 1 / (1 + base ** ((ra - rb) / scale))
|
| 105 |
+
if win == "model_a":
|
| 106 |
+
sa = 1
|
| 107 |
+
elif win == "model_b":
|
| 108 |
+
sa = 0
|
| 109 |
+
elif win == "tie" or win == "tie (bothbad)":
|
| 110 |
+
sa = 0.5
|
| 111 |
+
else:
|
| 112 |
+
raise Exception(f"unexpected vote {win}")
|
| 113 |
+
rating[model_a] += k * (sa - ea)
|
| 114 |
+
rating[model_b] += k * (1 - sa - eb)
|
| 115 |
+
|
| 116 |
+
return rating
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def convert_rating_from_float_to_int(df):
|
| 120 |
+
return {model: int(rating) for model, rating in compute_elo(df).items()}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def get_elo_results(df_instruct, df_code_instruct, tie_allowed):
|
| 124 |
+
df_all = pd.concat([df_instruct, df_code_instruct])
|
| 125 |
+
|
| 126 |
+
df_gpt_4 = load_dataset(
|
| 127 |
+
"gpt_4_evals/data/", split="train", revision="e007baaf6e505731c08a0bc1a833a1f8f8cb8846"
|
| 128 |
+
).to_pandas()
|
| 129 |
+
|
| 130 |
+
dfs = [df_instruct, df_code_instruct, df_all]
|
| 131 |
+
elo_ratings = [convert_rating_from_float_to_int(create_eval_df(df, tie_allowed=tie_allowed)) for df in dfs]
|
| 132 |
+
|
| 133 |
+
gpt_4_elo_ratings = convert_rating_from_float_to_int(create_eval_df_for_gpt(df_gpt_4, tie_allowed=tie_allowed))
|
| 134 |
+
elo_ratings.append(gpt_4_elo_ratings)
|
| 135 |
+
|
| 136 |
+
results = [
|
| 137 |
+
EloEvalResult(
|
| 138 |
+
model=model_name,
|
| 139 |
+
gpt_4_all=elo_ratings[3][model_name],
|
| 140 |
+
human_all=elo_ratings[2][model_name],
|
| 141 |
+
human_instruct=elo_ratings[0][model_name],
|
| 142 |
+
human_code_instruct=elo_ratings[1][model_name],
|
| 143 |
+
tie_allowed=tie_allowed,
|
| 144 |
+
)
|
| 145 |
+
for model_name in elo_ratings[0].keys()
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
return results
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def get_elo_results_dicts(df_instruct, df_code_instruct, tie_allowed) -> List[Dict]:
|
| 152 |
+
eval_results = get_elo_results(df_instruct, df_code_instruct, tie_allowed)
|
| 153 |
+
return [r.to_dict() for r in eval_results]
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def get_elo_plots(df_instruct, df_code_instruct, tie_allowed):
|
| 157 |
+
df_instruct = create_eval_df(df_instruct, tie_allowed=tie_allowed)
|
| 158 |
+
df_code_instruct = create_eval_df(df_code_instruct, tie_allowed=tie_allowed)
|
| 159 |
+
df_all = pd.concat([df_instruct, df_code_instruct])
|
| 160 |
+
game = df_all[["model_a", "model_b", "win"]]
|
| 161 |
+
|
| 162 |
+
game_switch = switch_model_a_b(game)
|
| 163 |
+
plot_1 = visualize_pairwise_win_fraction(game_switch, PLOT_1_TITLE)
|
| 164 |
+
|
| 165 |
+
plot_2 = visualize_battle_count(game_switch, PLOT_2_TITLE)
|
| 166 |
+
|
| 167 |
+
BOOTSTRAP_ROUNDS = 1000
|
| 168 |
+
if "bootstrap_elo_lu" not in globals():
|
| 169 |
+
bootstrap_elo_lu = get_bootstrap_result(game_switch, compute_elo, BOOTSTRAP_ROUNDS)
|
| 170 |
+
|
| 171 |
+
plot_3 = visualize_bootstrap_scores(bootstrap_elo_lu, PLOT_3_TITLE)
|
| 172 |
+
|
| 173 |
+
plot_4 = visualize_rating_count(game, PLOT_4_TITLE)
|
| 174 |
+
|
| 175 |
+
return plot_1, plot_2, plot_3, plot_4
|
utils.py
CHANGED
|
@@ -1,21 +1,11 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import shutil
|
| 3 |
-
import numpy as np
|
| 4 |
-
import gradio as gr
|
| 5 |
-
from huggingface_hub import Repository, HfApi
|
| 6 |
-
from transformers import AutoConfig, AutoModel
|
| 7 |
-
import json
|
| 8 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
-
import pandas as pd
|
| 10 |
-
import datetime
|
| 11 |
import glob
|
|
|
|
| 12 |
from dataclasses import dataclass
|
| 13 |
-
from typing import List, Tuple
|
| 14 |
|
| 15 |
-
|
| 16 |
-
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 17 |
-
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
| 18 |
|
|
|
|
| 19 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
| 20 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
| 21 |
BENCH_TO_NAME = {
|
|
@@ -71,13 +61,11 @@ class EvalResult:
|
|
| 71 |
data_dict["eval_name"] = self.eval_name
|
| 72 |
data_dict["8bit"] = self.is_8bit
|
| 73 |
data_dict["Model"] = make_clickable_model(base_model)
|
| 74 |
-
# dummy column to implement search bar (hidden by custom CSS)
|
| 75 |
data_dict["model_name_for_query"] = base_model
|
| 76 |
data_dict["Revision"] = self.revision
|
| 77 |
data_dict["Average ⬆️"] = round(
|
| 78 |
sum([v for k, v in self.results.items()]) / 4.0, 1
|
| 79 |
)
|
| 80 |
-
# data_dict["# params"] = get_n_params(base_model)
|
| 81 |
|
| 82 |
for benchmark in BENCHMARKS:
|
| 83 |
if not benchmark in self.results.keys():
|
|
@@ -151,7 +139,3 @@ def get_eval_results_dicts(is_public=True) -> List[Dict]:
|
|
| 151 |
eval_results = get_eval_results(is_public)
|
| 152 |
|
| 153 |
return [e.to_dict() for e in eval_results]
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
eval_results_dict = get_eval_results_dicts()
|
| 157 |
-
# print(eval_results_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import glob
|
| 2 |
+
import json
|
| 3 |
from dataclasses import dataclass
|
| 4 |
+
from typing import Dict, List, Tuple
|
| 5 |
|
| 6 |
+
import numpy as np
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# clone / pull the lmeh eval data
|
| 9 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
| 10 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
| 11 |
BENCH_TO_NAME = {
|
|
|
|
| 61 |
data_dict["eval_name"] = self.eval_name
|
| 62 |
data_dict["8bit"] = self.is_8bit
|
| 63 |
data_dict["Model"] = make_clickable_model(base_model)
|
|
|
|
| 64 |
data_dict["model_name_for_query"] = base_model
|
| 65 |
data_dict["Revision"] = self.revision
|
| 66 |
data_dict["Average ⬆️"] = round(
|
| 67 |
sum([v for k, v in self.results.items()]) / 4.0, 1
|
| 68 |
)
|
|
|
|
| 69 |
|
| 70 |
for benchmark in BENCHMARKS:
|
| 71 |
if not benchmark in self.results.keys():
|
|
|
|
| 139 |
eval_results = get_eval_results(is_public)
|
| 140 |
|
| 141 |
return [e.to_dict() for e in eval_results]
|
|
|
|
|
|
|
|
|
|
|
|
visualizations.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# 1
|
| 9 |
+
def compute_pairwise_win_fraction(battles):
|
| 10 |
+
# Times each model wins as Model A
|
| 11 |
+
a_win_ptbl = pd.pivot_table(
|
| 12 |
+
battles[battles["win"] == "model_a"],
|
| 13 |
+
index="model_a",
|
| 14 |
+
columns="model_b",
|
| 15 |
+
aggfunc="size",
|
| 16 |
+
fill_value=0,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Table counting times each model wins as Model B
|
| 20 |
+
b_win_ptbl = pd.pivot_table(
|
| 21 |
+
battles[battles["win"] == "model_b"],
|
| 22 |
+
index="model_a",
|
| 23 |
+
columns="model_b",
|
| 24 |
+
aggfunc="size",
|
| 25 |
+
fill_value=0,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Table counting number of A-B pairs
|
| 29 |
+
num_battles_ptbl = pd.pivot_table(battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0)
|
| 30 |
+
|
| 31 |
+
# Computing the proportion of wins for each model as A and as B
|
| 32 |
+
# against all other models
|
| 33 |
+
row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / (num_battles_ptbl + num_battles_ptbl.T)
|
| 34 |
+
|
| 35 |
+
# Arrange ordering according to proprition of wins
|
| 36 |
+
prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False)
|
| 37 |
+
model_names = list(prop_wins.keys())
|
| 38 |
+
row_beats_col = row_beats_col_freq.loc[model_names, model_names]
|
| 39 |
+
return row_beats_col
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def visualize_pairwise_win_fraction(battles, title):
|
| 43 |
+
row_beats_col = compute_pairwise_win_fraction(battles)
|
| 44 |
+
fig = px.imshow(row_beats_col, color_continuous_scale="RdBu", text_auto=".2f", title=title)
|
| 45 |
+
fig.update_layout(
|
| 46 |
+
xaxis_title="Model B",
|
| 47 |
+
yaxis_title="Model A",
|
| 48 |
+
xaxis_side="top",
|
| 49 |
+
title_y=0.07,
|
| 50 |
+
title_x=0.5,
|
| 51 |
+
)
|
| 52 |
+
fig.update_traces(hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Fraction of A Wins: %{z}<extra></extra>")
|
| 53 |
+
return fig
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# 2
|
| 57 |
+
def switch_model_a_b(df):
|
| 58 |
+
df_switch = df.copy()
|
| 59 |
+
# switch with probability 0.5
|
| 60 |
+
for i, row in df.iterrows():
|
| 61 |
+
if np.random.rand() < 0.5:
|
| 62 |
+
df_switch.at[i, "model_a"] = row["model_b"]
|
| 63 |
+
df_switch.at[i, "model_b"] = row["model_a"]
|
| 64 |
+
if row["win"] == "model_a":
|
| 65 |
+
df_switch.at[i, "win"] = "model_b"
|
| 66 |
+
elif row["win"] == "model_b":
|
| 67 |
+
df_switch.at[i, "win"] = "model_a"
|
| 68 |
+
return df_switch
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def visualize_battle_count(battles, title):
|
| 72 |
+
ptbl = pd.pivot_table(battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0)
|
| 73 |
+
battle_counts = ptbl + ptbl.T
|
| 74 |
+
ordering = battle_counts.sum().sort_values(ascending=False).index
|
| 75 |
+
fig = px.imshow(battle_counts.loc[ordering, ordering], title=title, text_auto=True, width=600)
|
| 76 |
+
fig.update_layout(
|
| 77 |
+
xaxis_title="Model B",
|
| 78 |
+
yaxis_title="Model A",
|
| 79 |
+
xaxis_side="top",
|
| 80 |
+
title_y=0.07,
|
| 81 |
+
title_x=0.5,
|
| 82 |
+
)
|
| 83 |
+
fig.update_traces(hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Count: %{z}<extra></extra>")
|
| 84 |
+
return fig
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# 3
|
| 88 |
+
def get_bootstrap_result(battles, func_compute_elo, num_round):
|
| 89 |
+
rows = [func_compute_elo(battles.sample(frac=1.0, replace=True)) for _ in range(num_round)]
|
| 90 |
+
df = pd.DataFrame(rows)
|
| 91 |
+
return df[df.median().sort_values(ascending=False).index]
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def visualize_bootstrap_scores(df, title):
|
| 95 |
+
bars = (
|
| 96 |
+
pd.DataFrame(
|
| 97 |
+
dict(
|
| 98 |
+
lower=df.quantile(0.025),
|
| 99 |
+
rating=df.quantile(0.5),
|
| 100 |
+
upper=df.quantile(0.975),
|
| 101 |
+
)
|
| 102 |
+
)
|
| 103 |
+
.reset_index(names="model")
|
| 104 |
+
.sort_values("rating", ascending=False)
|
| 105 |
+
)
|
| 106 |
+
bars["error_y"] = bars["upper"] - bars["rating"]
|
| 107 |
+
bars["error_y_minus"] = bars["rating"] - bars["lower"]
|
| 108 |
+
bars["rating_rounded"] = np.round(bars["rating"], 2)
|
| 109 |
+
fig = px.scatter(
|
| 110 |
+
bars,
|
| 111 |
+
x="model",
|
| 112 |
+
y="rating",
|
| 113 |
+
error_y="error_y",
|
| 114 |
+
error_y_minus="error_y_minus",
|
| 115 |
+
text="rating_rounded",
|
| 116 |
+
title=title,
|
| 117 |
+
)
|
| 118 |
+
fig.update_layout(xaxis_title="Model", yaxis_title="Rating")
|
| 119 |
+
return fig
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
# 4
|
| 123 |
+
def visualize_rating_count(df, title):
|
| 124 |
+
df_all_value_counts = pd.concat([df["model_a"], df["model_b"]]).value_counts()
|
| 125 |
+
fig = px.bar(df_all_value_counts, title=title, text_auto=True)
|
| 126 |
+
|
| 127 |
+
min_y = df_all_value_counts.min()
|
| 128 |
+
max_y = df_all_value_counts.max()
|
| 129 |
+
|
| 130 |
+
y_end = math.ceil(min_y / 100) * 100
|
| 131 |
+
y_begin = math.floor(max_y / 100) * 100
|
| 132 |
+
|
| 133 |
+
fig.update_layout(xaxis_title="model", yaxis_title="Rating Count", showlegend=False)
|
| 134 |
+
fig.update_yaxes(range=[y_begin, y_end])
|
| 135 |
+
# save the plot for the blog:
|
| 136 |
+
fig.write_html("model_counts.html", full_html=False, include_plotlyjs="cdn")
|
| 137 |
+
return fig
|