Spaces:
Running
Running
change tab order
Browse files
main.py
CHANGED
|
@@ -55,6 +55,7 @@ df_mah_pivot.reset_index(drop=False, inplace=True)
|
|
| 55 |
|
| 56 |
df_eval = pd.read_csv("multilingual_results.csv")
|
| 57 |
|
|
|
|
| 58 |
def map_task_to_group(task: str) -> str | None:
|
| 59 |
if task == "xcopa":
|
| 60 |
return "XCOPA"
|
|
@@ -70,6 +71,7 @@ def map_task_to_group(task: str) -> str | None:
|
|
| 70 |
return "Global MMLU"
|
| 71 |
return None
|
| 72 |
|
|
|
|
| 73 |
df_eval["group"] = df_eval.task.apply(map_task_to_group)
|
| 74 |
df_eval_grouped = df_eval[df_eval["group"].notna()].copy()
|
| 75 |
df_eval_grouped["Model"] = df_eval_grouped.model_name.apply(lambda s: s.split("/")[-1])
|
|
@@ -88,12 +90,14 @@ group_nshot = (
|
|
| 88 |
.to_dict()
|
| 89 |
)
|
| 90 |
|
|
|
|
| 91 |
def display_name(group: str) -> str:
|
| 92 |
label = group_nshot.get(group, "unknown")
|
| 93 |
if label == "mixed" or label == "unknown" or label == "unknown":
|
| 94 |
return f"{group} [mixed]" if label == "mixed" else f"{group} [unknown]"
|
| 95 |
return f"{group} [{label}]"
|
| 96 |
|
|
|
|
| 97 |
# Build a renamed version for display, preserving Model and Average columns
|
| 98 |
display_columns_map = {
|
| 99 |
col: display_name(col)
|
|
@@ -133,6 +137,46 @@ with gr.Blocks() as demo:
|
|
| 133 |
),
|
| 134 |
)
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
with gr.Tab("Instruction-tuning ๐ฏ๓ ง๓ ข๓ ฅ๐ด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ"):
|
| 137 |
gr.Markdown(
|
| 138 |
"""
|
|
@@ -195,42 +239,6 @@ with gr.Blocks() as demo:
|
|
| 195 |
),
|
| 196 |
)
|
| 197 |
|
| 198 |
-
with gr.Tab("Multilingual evaluations ๐"):
|
| 199 |
-
gr.Markdown(
|
| 200 |
-
"""
|
| 201 |
-
Aggregated multilingual performance by task group (mean across languages when applicable).
|
| 202 |
-
"""
|
| 203 |
-
)
|
| 204 |
-
# Order columns: Model, groups..., Average
|
| 205 |
-
raw_group_columns = [
|
| 206 |
-
col
|
| 207 |
-
for col in [
|
| 208 |
-
"INCLUDE",
|
| 209 |
-
"Belebele",
|
| 210 |
-
"Global MMLU",
|
| 211 |
-
"XCOPA",
|
| 212 |
-
"XStoryCloze",
|
| 213 |
-
"XWinograd",
|
| 214 |
-
]
|
| 215 |
-
if col in df_multilingual_pivot.columns
|
| 216 |
-
]
|
| 217 |
-
display_group_columns = [display_columns_map[col] for col in raw_group_columns]
|
| 218 |
-
ordered_columns = ["Model", *display_group_columns, "Average โฌ๏ธ"]
|
| 219 |
-
df_multilingual_display = df_multilingual_display_all.loc[:, ordered_columns]
|
| 220 |
-
Leaderboard(
|
| 221 |
-
value=df_multilingual_display.round(2),
|
| 222 |
-
select_columns=SelectColumns(
|
| 223 |
-
default_selection=list(df_multilingual_display.columns),
|
| 224 |
-
cant_deselect=["Model"],
|
| 225 |
-
label="Select Columns to Display:",
|
| 226 |
-
),
|
| 227 |
-
search_columns=SearchColumns(
|
| 228 |
-
primary_column="Model",
|
| 229 |
-
label="Filter a model",
|
| 230 |
-
secondary_columns=[],
|
| 231 |
-
),
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
|
| 235 |
if __name__ == "__main__":
|
| 236 |
demo.launch()
|
|
|
|
| 55 |
|
| 56 |
df_eval = pd.read_csv("multilingual_results.csv")
|
| 57 |
|
| 58 |
+
|
| 59 |
def map_task_to_group(task: str) -> str | None:
|
| 60 |
if task == "xcopa":
|
| 61 |
return "XCOPA"
|
|
|
|
| 71 |
return "Global MMLU"
|
| 72 |
return None
|
| 73 |
|
| 74 |
+
|
| 75 |
df_eval["group"] = df_eval.task.apply(map_task_to_group)
|
| 76 |
df_eval_grouped = df_eval[df_eval["group"].notna()].copy()
|
| 77 |
df_eval_grouped["Model"] = df_eval_grouped.model_name.apply(lambda s: s.split("/")[-1])
|
|
|
|
| 90 |
.to_dict()
|
| 91 |
)
|
| 92 |
|
| 93 |
+
|
| 94 |
def display_name(group: str) -> str:
|
| 95 |
label = group_nshot.get(group, "unknown")
|
| 96 |
if label == "mixed" or label == "unknown" or label == "unknown":
|
| 97 |
return f"{group} [mixed]" if label == "mixed" else f"{group} [unknown]"
|
| 98 |
return f"{group} [{label}]"
|
| 99 |
|
| 100 |
+
|
| 101 |
# Build a renamed version for display, preserving Model and Average columns
|
| 102 |
display_columns_map = {
|
| 103 |
col: display_name(col)
|
|
|
|
| 137 |
),
|
| 138 |
)
|
| 139 |
|
| 140 |
+
with gr.Tab("Multilingual evaluations ๐"):
|
| 141 |
+
gr.Markdown(
|
| 142 |
+
"""
|
| 143 |
+
Aggregated multilingual performance by task group (mean across languages when applicable).
|
| 144 |
+
"""
|
| 145 |
+
)
|
| 146 |
+
# Order columns: Model, groups..., Average
|
| 147 |
+
raw_group_columns = [
|
| 148 |
+
col
|
| 149 |
+
for col in [
|
| 150 |
+
"INCLUDE",
|
| 151 |
+
"Belebele",
|
| 152 |
+
"Global MMLU",
|
| 153 |
+
"XCOPA",
|
| 154 |
+
"XStoryCloze",
|
| 155 |
+
"XWinograd",
|
| 156 |
+
]
|
| 157 |
+
if col in df_multilingual_pivot.columns
|
| 158 |
+
]
|
| 159 |
+
display_group_columns = [
|
| 160 |
+
display_columns_map[col] for col in raw_group_columns
|
| 161 |
+
]
|
| 162 |
+
ordered_columns = ["Model", *display_group_columns, "Average โฌ๏ธ"]
|
| 163 |
+
df_multilingual_display = df_multilingual_display_all.loc[
|
| 164 |
+
:, ordered_columns
|
| 165 |
+
]
|
| 166 |
+
Leaderboard(
|
| 167 |
+
value=df_multilingual_display.round(2),
|
| 168 |
+
select_columns=SelectColumns(
|
| 169 |
+
default_selection=list(df_multilingual_display.columns),
|
| 170 |
+
cant_deselect=["Model"],
|
| 171 |
+
label="Select Columns to Display:",
|
| 172 |
+
),
|
| 173 |
+
search_columns=SearchColumns(
|
| 174 |
+
primary_column="Model",
|
| 175 |
+
label="Filter a model",
|
| 176 |
+
secondary_columns=[],
|
| 177 |
+
),
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
with gr.Tab("Instruction-tuning ๐ฏ๓ ง๓ ข๓ ฅ๐ด๓ ง๓ ข๓ ฅ๓ ฎ๓ ง๓ ฟ"):
|
| 181 |
gr.Markdown(
|
| 182 |
"""
|
|
|
|
| 239 |
),
|
| 240 |
)
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
|
| 243 |
if __name__ == "__main__":
|
| 244 |
demo.launch()
|