Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pickle | |
import numpy as np | |
import glob | |
import tqdm | |
import torch | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModel, set_seed | |
from peft import PeftModel | |
import logging | |
import os | |
import json | |
import spaces | |
import ir_datasets | |
import pytrec_eval | |
from huggingface_hub import login | |
import transformers | |
import peft | |
import faiss | |
import sys | |
from collections import defaultdict | |
set_seed(42) | |
# Set up logging | |
# Set up logging with time printing | |
logging.basicConfig( | |
format='%(asctime)s %(levelname)-8s %(message)s', | |
level=logging.INFO, | |
datefmt='%Y-%m-%d %H:%M:%S') | |
logger = logging.getLogger(__name__) | |
# Authenticate with HF_TOKEN | |
login(token=os.environ['HF_TOKEN']) | |
# Global variables | |
CUR_MODEL = "Samaya-AI/Promptriever-Llama2-v1" | |
BASE_MODEL = "meta-llama/Llama-2-7b-hf" | |
tokenizer = None | |
model = None | |
retrievers = {} | |
corpus_lookups = {} | |
queries = {} | |
q_lookups = {} | |
qrels = {} | |
query2qid = {} | |
datasets = ["scifact"] | |
current_dataset = "scifact" | |
faiss_index = None | |
def log_system_info(): | |
logger.info("System Information:") | |
logger.info(f"Python version: {sys.version}") | |
logger.info("\nPackage Versions:") | |
logger.info(f"torch: {torch.__version__}") | |
logger.info(f"transformers: {transformers.__version__}") | |
logger.info(f"peft: {peft.__version__}") | |
logger.info(f"faiss: {faiss.__version__}") | |
logger.info(f"gradio: {gr.__version__}") | |
logger.info(f"ir_datasets: {ir_datasets.__version__}") | |
if torch.cuda.is_available(): | |
logger.info(f"\nCUDA Information:") | |
logger.info(f"CUDA available: Yes") | |
logger.info(f"CUDA version: {torch.version.cuda}") | |
logger.info(f"cuDNN version: {torch.backends.cudnn.version()}") | |
logger.info(f"Number of GPUs: {torch.cuda.device_count()}") | |
for i in range(torch.cuda.device_count()): | |
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
else: | |
logger.info("\nCUDA Information:") | |
logger.info("CUDA available: No") | |
log_system_info() | |
def pool(last_hidden_states, attention_mask, pool_type="last"): | |
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) | |
if pool_type == "last": | |
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) | |
if left_padding: | |
emb = last_hidden[:, -1] | |
else: | |
sequence_lengths = attention_mask.sum(dim=1) - 1 | |
batch_size = last_hidden.shape[0] | |
emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths] | |
else: | |
raise ValueError(f"pool_type {pool_type} not supported") | |
return emb | |
def create_batch_dict(tokenizer, input_texts, always_add_eos="last", max_length=512): | |
batch_dict = tokenizer( | |
input_texts, | |
max_length=max_length - 1, | |
return_token_type_ids=False, | |
return_attention_mask=False, | |
padding=False, | |
truncation=True | |
) | |
if always_add_eos == "last": | |
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']] | |
return tokenizer.pad( | |
batch_dict, | |
padding=True, | |
pad_to_multiple_of=8, | |
return_attention_mask=True, | |
return_tensors="pt", | |
) | |
class RepLlamaModel: | |
def __init__(self, model_name_or_path): | |
self.base_model = "meta-llama/Llama-2-7b-hf" | |
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model) | |
self.tokenizer.model_max_length = 2048 | |
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.tokenizer.padding_side = "right" | |
self.model = self.get_model(model_name_or_path) | |
self.model.config.max_length = 2048 | |
def get_model(self, peft_model_name): | |
base_model = AutoModel.from_pretrained(self.base_model) | |
model = PeftModel.from_pretrained(base_model, peft_model_name) | |
model = model.merge_and_unload() | |
model.eval() | |
return model | |
def encode(self, texts, batch_size=48, **kwargs): | |
# if model is not on cuda, put it there | |
if self.model.device.type != "cuda": | |
self.model = self.model.cuda() | |
all_embeddings = [] | |
for i in tqdm.tqdm(range(0, len(texts), batch_size)): | |
batch_texts = texts[i:i+batch_size] | |
batch_dict = create_batch_dict(self.tokenizer, batch_texts, always_add_eos="last") | |
batch_dict = {key: value.cuda() for key, value in batch_dict.items()} | |
with torch.cuda.amp.autocast(): | |
with torch.no_grad(): | |
outputs = self.model(**batch_dict) | |
embeddings = pool(outputs.last_hidden_state, batch_dict['attention_mask'], 'last') | |
embeddings = F.normalize(embeddings, p=2, dim=-1) | |
logger.info(f"Encoded shape: {embeddings.shape}, Norm of first embedding: {torch.norm(embeddings[0]).item()}") | |
all_embeddings.append(embeddings.cpu().numpy()) | |
# self.model = self.model.cpu() | |
return np.concatenate(all_embeddings, axis=0) | |
def load_corpus_embeddings(dataset_name): | |
corpus_path = f"{dataset_name}/corpus_emb.*.pkl" | |
index_files = glob.glob(corpus_path) | |
index_files.sort(key=lambda x: int(x.split('.')[-2])) | |
all_embeddings = [] | |
corpus_lookups = [] | |
for file in index_files: | |
with open(file, 'rb') as f: | |
embeddings, p_lookup = pickle.load(f) | |
all_embeddings.append(embeddings) | |
corpus_lookups.extend(p_lookup) | |
all_embeddings = np.concatenate(all_embeddings, axis=0) | |
logger.info(f"Loaded corpus embeddings for {dataset_name}. Shape: {all_embeddings.shape}") | |
return all_embeddings, corpus_lookups | |
def create_faiss_index(embeddings): | |
dimension = embeddings.shape[1] | |
index = faiss.IndexFlatIP(dimension) | |
index.add(embeddings) | |
logger.info(f"Created FAISS index with {index.ntotal} vectors of dimension {dimension}") | |
return index | |
def load_or_create_faiss_index(dataset_name): | |
embeddings, corpus_lookups = load_corpus_embeddings(dataset_name) | |
index = create_faiss_index(embeddings) | |
return index, corpus_lookups | |
def initialize_faiss_and_corpus(dataset_name): | |
global corpus_lookups | |
index, corpus_lookups[dataset_name] = load_or_create_faiss_index(dataset_name) | |
logger.info(f"Initialized FAISS index and corpus lookups for {dataset_name}") | |
return index | |
def search_queries(dataset_name, q_reps, depth=100): | |
global faiss_index | |
logger.info(f"Searching queries. Shape of q_reps: {q_reps.shape}") | |
# Perform the search | |
all_scores, all_indices = faiss_index.search(q_reps, depth) | |
logger.info(f"Search completed. Shape of all_scores: {all_scores.shape}, all_indices: {all_indices.shape}") | |
logger.info(f"Sample scores: {all_scores[0][:5]}, Sample indices: {all_indices[0][:5]}") | |
psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices] | |
return all_scores, np.array(psg_indices) | |
def load_queries(dataset_name): | |
global queries, q_lookups, qrels, query2qid | |
dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else "")) | |
queries[dataset_name] = [] | |
query2qid[dataset_name] = defaultdict(dict) | |
q_lookups[dataset_name] = {} | |
qrels[dataset_name] = {} | |
for query in dataset.queries_iter(): | |
queries[dataset_name].append(query.text) | |
q_lookups[dataset_name][query.query_id] = query.text | |
query2qid[dataset_name][query.text] = query.query_id | |
for qrel in dataset.qrels_iter(): | |
if qrel.query_id not in qrels[dataset_name]: | |
qrels[dataset_name][qrel.query_id] = {} | |
qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance | |
logger.info(f"Loaded queries for {dataset_name}. Total queries: {len(queries[dataset_name])}") | |
logger.info(f"Loaded qrels for {dataset_name}. Total query IDs: {len(qrels[dataset_name])}") | |
def evaluate(qrels, results, k_values): | |
qrels = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in qrels.items()} | |
results = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in results.items()} | |
evaluator = pytrec_eval.RelevanceEvaluator( | |
qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values} | |
) | |
scores = evaluator.evaluate(results) | |
metrics = {} | |
for k in k_values: | |
ndcg_scores = [query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()] | |
recall_scores = [query_scores[f"recall_{k}"] for query_scores in scores.values()] | |
metrics[f"NDCG@{k}"] = round(np.mean(ndcg_scores), 3) | |
metrics[f"Recall@{k}"] = round(np.mean(recall_scores), 3) | |
logger.info(f"NDCG@{k}: mean={metrics[f'NDCG@{k}']}, min={min(ndcg_scores)}, max={max(ndcg_scores)}") | |
logger.info(f"Recall@{k}: mean={metrics[f'Recall@{k}']}, min={min(recall_scores)}, max={max(recall_scores)}") | |
# delete nDCG@100 and Recall@10 | |
del metrics["NDCG@100"] | |
del metrics["Recall@100"] | |
return metrics | |
def run_evaluation(dataset, postfix): | |
global current_dataset, queries, model, query2qid | |
current_dataset = dataset | |
input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[current_dataset]] | |
logger.info(f"Number of input texts: {len(input_texts)}") | |
logger.info(f"Sample input text: {input_texts[0]}") | |
q_reps = model.encode(input_texts) | |
logger.info(f"Encoded query first five: {q_reps[0][:5]}") | |
logger.info(f"Encoded query representations shape: {q_reps.shape}") | |
all_scores, psg_indices = search_queries(dataset, q_reps) | |
results = {} | |
logging.info(f"Number of queries in q_lookups: {len(q_lookups[dataset])}") | |
logging.info("Size of all_scores: " + str(len(all_scores))) | |
logging.info("Size of psg_indices: " + str(len(psg_indices))) | |
for query, scores, doc_ids in zip(queries[current_dataset], all_scores, psg_indices): | |
qid = query2qid[dataset][query] | |
qid_str = str(qid) | |
results[qid_str] = {} | |
for doc_id, score in zip(doc_ids, scores): | |
doc_id_str = str(doc_id) | |
results[qid_str][doc_id_str] = float(score) | |
if not results[qid_str]: # If no results for this query | |
logger.warning(f"No results for query {qid_str}") | |
logger.info(f"Number of queries in results: {len(results)}") | |
logger.info(f"Sample result: {next(iter(results.items()))}") | |
qrels[dataset] = {str(qid): {str(doc_id): rel for doc_id, rel in rels.items()} | |
for qid, rels in qrels[dataset].items()} | |
logger.info(f"Number of results: {len(results)}") | |
logger.info(f"Sample result: {list(results.items())[0]}") | |
logger.info(f"Number of queries in qrels: {len(qrels[dataset])}") | |
logger.info(f"Sample qrel: {list(qrels[dataset].items())[0]}") | |
logger.info(f"Number of queries in results: {len(results)}") | |
logger.info(f"Sample result: {list(results.items())[0]}") | |
# Check for mismatches | |
qrels_keys = set(qrels[dataset].keys()) | |
results_keys = set(results.keys()) | |
logger.info(f"Queries in qrels but not in results: {qrels_keys - results_keys}") | |
logger.info(f"Queries in results but not in qrels: {results_keys - qrels_keys}") | |
metrics = evaluate(qrels[dataset], results, k_values=[10, 100]) | |
return metrics | |
def gradio_interface(dataset, postfix): | |
return run_evaluation(dataset, postfix) | |
if model is None: | |
model = RepLlamaModel(model_name_or_path=CUR_MODEL) | |
load_queries(current_dataset) | |
faiss_index = initialize_faiss_and_corpus(current_dataset) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Dropdown(choices=datasets, label="Dataset", value="scifact"), | |
gr.Textbox(label="Prompt") | |
], | |
outputs=gr.JSON(label="Evaluation Results"), | |
title="Promptriever Demo", | |
description="Enter a prompt to evaluate the model's performance on SciFact. Note: it takes between **10-30 seconds** to evaluate.", | |
examples=[ | |
["scifact", ""], | |
["scifact", "Think carefully about these conditions when determining relevance"] | |
], | |
cache_examples=False, | |
) | |
# Launch the interface | |
iface.launch(share=False) | |