Update index.html
Browse files- index.html +4 -16
index.html
CHANGED
@@ -48,18 +48,6 @@
|
|
48 |
</p>
|
49 |
</div>
|
50 |
|
51 |
-
<!-- Interactive Highlight Slider -->
|
52 |
-
<div class="container">
|
53 |
-
<h2>Paper Highlights</h2>
|
54 |
-
<div id="highlight-box" style="text-align: center; padding: 30px; border: 1px solid #ddd; border-radius: 10px; background: #fafafa;">
|
55 |
-
<p id="highlight-text" style="font-size: 1.2rem; font-style: italic;"></p>
|
56 |
-
</div>
|
57 |
-
<div class="text-center mt-3">
|
58 |
-
<button onclick="prevHighlight()" class="btn btn-outline-primary">← Prev</button>
|
59 |
-
<button onclick="nextHighlight()" class="btn btn-outline-primary">Next →</button>
|
60 |
-
</div>
|
61 |
-
</div>
|
62 |
-
|
63 |
<!-- Unified Paper Highlights Section -->
|
64 |
<div class="container" style="max-width: 900px;">
|
65 |
<h2>Paper Highlights</h2>
|
@@ -83,7 +71,7 @@
|
|
83 |
image: "figures/highlights/table.png"
|
84 |
},
|
85 |
{
|
86 |
-
text: "Both modeling paradigms (EnCodec-based latent) show comparable performance with a slight favor toward AR, which also
|
87 |
image: "figures/highlights/fidelity.png"
|
88 |
},
|
89 |
{
|
@@ -91,15 +79,15 @@
|
|
91 |
image: "figures/highlights/control.png"
|
92 |
},
|
93 |
{
|
94 |
-
text: "Supervised flow matching is the most robust inpainting method: it yields the smoothest and most coherent edits; zero-shot
|
95 |
image: "figures/highlights/inpainting.png"
|
96 |
},
|
97 |
{
|
98 |
-
text: "AR scales better with batch size thanks to KV caching
|
99 |
image: "figures/highlights/speed_vs_quality.png"
|
100 |
},
|
101 |
{
|
102 |
-
text: "When
|
103 |
image: "figures/highlights/training_sensitivity.png"
|
104 |
}
|
105 |
];
|
|
|
48 |
</p>
|
49 |
</div>
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
<!-- Unified Paper Highlights Section -->
|
52 |
<div class="container" style="max-width: 900px;">
|
53 |
<h2>Paper Highlights</h2>
|
|
|
71 |
image: "figures/highlights/table.png"
|
72 |
},
|
73 |
{
|
74 |
+
text: "Both modeling paradigms (EnCodec-based latent) show comparable performance with a slight favor toward AR, which also proves to be more robust to the latent representation’s sample rate. FM performance degrades as the number of inference steps decreases.",
|
75 |
image: "figures/highlights/fidelity.png"
|
76 |
},
|
77 |
{
|
|
|
79 |
image: "figures/highlights/control.png"
|
80 |
},
|
81 |
{
|
82 |
+
text: "Supervised flow matching is the most robust inpainting method: it yields the smoothest and most coherent edits; zero-shot FM is fast but less stable without tuning.",
|
83 |
image: "figures/highlights/inpainting.png"
|
84 |
},
|
85 |
{
|
86 |
+
text: "AR scales better with batch size thanks to KV caching. FM can be faster by reducing inference steps—but this comes at the cost of generation quality.",
|
87 |
image: "figures/highlights/speed_vs_quality.png"
|
88 |
},
|
89 |
{
|
90 |
+
text: "When update steps are capped, FM reaches near-topline FAD and PQ even with small batches. AR requires a larger token budget per step to match performance.",
|
91 |
image: "figures/highlights/training_sensitivity.png"
|
92 |
}
|
93 |
];
|