patrickvonplaten commited on
Commit
0711b9e
·
1 Parent(s): d27799d
Files changed (1) hide show
  1. app.py +11 -12
app.py CHANGED
@@ -5,12 +5,12 @@ from PIL import Image
5
  import time
6
  import psutil
7
  import random
8
- from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
9
 
10
 
11
  start_time = time.time()
12
  current_steps = 25
13
-
14
  PIPE = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
15
 
16
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
@@ -26,7 +26,6 @@ def error_str(error, title="Error"):
26
 
27
 
28
  def inference(
29
- model_name,
30
  prompt,
31
  guidance,
32
  steps,
@@ -49,7 +48,6 @@ def inference(
49
  try:
50
  return (
51
  img_to_img(
52
- model_name,
53
  prompt,
54
  n_images,
55
  neg_prompt,
@@ -69,7 +67,6 @@ def inference(
69
 
70
 
71
  def img_to_img(
72
- model_name,
73
  prompt,
74
  n_images,
75
  neg_prompt,
@@ -134,11 +131,6 @@ with gr.Blocks(css="style.css") as demo:
134
  with gr.Row():
135
  with gr.Column(scale=55):
136
  with gr.Group():
137
- model_name = gr.Dropdown(
138
- label="Model",
139
- choices=[m.name for m in models],
140
- value=models[0].name,
141
- )
142
  with gr.Box(visible=False) as custom_model_group:
143
  gr.HTML(
144
  "<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
@@ -189,6 +181,14 @@ with gr.Blocks(css="style.css") as demo:
189
  step=1,
190
  )
191
 
 
 
 
 
 
 
 
 
192
  seed = gr.Slider(
193
  0, 2147483647, label="Seed (0 = random)", value=0, step=1
194
  )
@@ -206,7 +206,6 @@ with gr.Blocks(css="style.css") as demo:
206
  )
207
 
208
  inputs = [
209
- model_name,
210
  prompt,
211
  guidance,
212
  steps,
@@ -224,7 +223,7 @@ with gr.Blocks(css="style.css") as demo:
224
 
225
  ex = gr.Examples(
226
  [],
227
- inputs=[model_name, prompt, guidance, steps, neg_prompt],
228
  outputs=outputs,
229
  fn=inference,
230
  cache_examples=True,
 
5
  import time
6
  import psutil
7
  import random
8
+ # from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
9
 
10
 
11
  start_time = time.time()
12
  current_steps = 25
13
+
14
  PIPE = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
15
 
16
  device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
 
26
 
27
 
28
  def inference(
 
29
  prompt,
30
  guidance,
31
  steps,
 
48
  try:
49
  return (
50
  img_to_img(
 
51
  prompt,
52
  n_images,
53
  neg_prompt,
 
67
 
68
 
69
  def img_to_img(
 
70
  prompt,
71
  n_images,
72
  neg_prompt,
 
131
  with gr.Row():
132
  with gr.Column(scale=55):
133
  with gr.Group():
 
 
 
 
 
134
  with gr.Box(visible=False) as custom_model_group:
135
  gr.HTML(
136
  "<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>"
 
181
  step=1,
182
  )
183
 
184
+ with gr.Row():
185
+ width = gr.Slider(
186
+ label="Width", value=512, minimum=64, maximum=1024, step=8
187
+ )
188
+ height = gr.Slider(
189
+ label="Height", value=512, minimum=64, maximum=1024, step=8
190
+ )
191
+
192
  seed = gr.Slider(
193
  0, 2147483647, label="Seed (0 = random)", value=0, step=1
194
  )
 
206
  )
207
 
208
  inputs = [
 
209
  prompt,
210
  guidance,
211
  steps,
 
223
 
224
  ex = gr.Examples(
225
  [],
226
+ inputs=[prompt, guidance, steps, neg_prompt],
227
  outputs=outputs,
228
  fn=inference,
229
  cache_examples=True,