File size: 11,527 Bytes
92f0e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import torch, itertools, os
from collections import defaultdict, OrderedDict
from gan_training import checkpoints
from . import nethook, pbar, LBFGS
from seeing.nethook import InstrumentedModel
from torch.nn.functional import mse_loss
def refine_z_lbfgs(init_z, G, target_x, F=None, lambda_f=0,
R=None, lambda_r=0, num_steps=1000, quiet=False,
show=None, show_every=100):
'''
Starting at init_z, uss LBFGS to find a z for which G(z) -> target_x.
By default uses l1_loss, but can also mse(F(G(z)), F(target_x))
'''
z = init_z.clone()
parameters = [z]
nethook.set_requires_grad(False, G)
nethook.set_requires_grad(True, *parameters)
if lambda_f:
with torch.no_grad():
target_f = F(target_x)
nethook.set_requires_grad(False, F)
optimizer = LBFGS.FullBatchLBFGS(parameters)
def closure():
optimizer.zero_grad()
current_x = G(z)
loss = torch.nn.functional.l1_loss(target_x, current_x)
if lambda_f:
loss += torch.nn.functional.mse_loss(target_f, F(current_x)
) * lambda_f
if lambda_r:
loss += R(z) * lambda_r
return loss
pb = (lambda x: x) if quiet else pbar
with torch.enable_grad():
for step_num in pb(range(num_steps + 1)):
if step_num == 0:
loss = closure()
loss.backward()
lr, F_eval, G_eval = 0, 0, 0
else:
options = {'closure': closure, 'current_loss': loss,
'max_ls': 10}
loss, _, lr, _, _, _, _, _ = optimizer.step(options)
if show and (step_num % show_every == 0):
with torch.no_grad():
show(x=G(z), z=z, loss=loss, it=step_num)
return z
def split_gen_layers(enc, gen, layername):
'''
Given an inverter layername, splits the generator sequence into three:
(1) generator sequence before the layers to be inverted
(2) sequence of generator layers to be inverted by enc[layername]
(3) generator sequence after the layers to be inverted
'''
info = list(enc.inverse_info().items())
index = [i for i, (n, v) in enumerate(info) if n == layername][0]
upto_layer = info[index - 1][1]['first_layer'] if index > 0 else None
args = info[index][1]
first_layer = args['first_layer']
layers = nethook.subsequence(gen,
first_layer=first_layer, upto_layer=upto_layer)
prev_layers = nethook.subsequence(gen, upto_layer=first_layer)
next_layers = (nethook.subsequence(gen, first_layer=upto_layer) if
upto_layer else torch.nn.Sequential())
return prev_layers, layers, next_layers
def last_gen_layername(enc, gen, layername):
_, layers, _ = split_gen_layers(enc, gen, layername)
return [n for n, c in layers.named_children()][-1]
def layers_after(enc, layername):
layernames = [n for n, c in enc.named_children()]
index = layernames.index(layername)
if index + 1 < len(layernames):
return nethook.subsequence(enc, layernames[index + 1])
else:
return torch.nn.Sequential()
def train_inv_layer(enc, gen, dists, layername, combine_z=None,
batch_size=100, test_batches=10, checkpoint_dir='ckpts',
resume_from=None, logfile=None, **kwargs):
'''
Inverts a single layer of a multilayer inverter.
Both enc and should be a nn.Sequential subclasses, and
layername specifies the layer of enc to train. That layer
of enc will be trained to invert a set of gen layers.
Which layers specifically are determined by split_gen_layers,
which depends on enc.inverse_info(), to specify how each inverter
layer relates to layers of gen.
'''
if logfile is None:
logfile = os.path.join(checkpoint_dir, 'log.txt')
prev_layers, layers, next_layers = split_gen_layers(enc, gen, layername)
inv = getattr(enc, layername)
device = next(gen.parameters()).device
args = enc.inverse_info()[layername]
kwargs_out = {k: v for k, v in args.items() if k != 'first_layer'}
kwargs_out.update(kwargs)
if 'x_weight' not in kwargs_out:
kwargs_out['x_weight'] = 0
nethook.set_requires_grad(False, layers, prev_layers, next_layers)
if combine_z is not None:
nethook.set_requires_grad(False, combine_z)
prev_layers_old = prev_layers
prev_layers = lambda *a: prev_layers_old(combine_z(*a))
zsampler = infinite_sampler(dists, prev_layers, batch_size, device)
tsample = test_sampler(dists, prev_layers, batch_size, test_batches, device)
train_inverse(inv, layers, zsampler, test_sampler=tsample,
resume_from=resume_from,
checkpoint_dir=checkpoint_dir, logfile=logfile,
**kwargs_out)
def train_inv_joint(enc, gen, dists, combine_z=None,
inv_layer=None, gen_layer=None,
batch_size=50, test_batches=10,
checkpoint_dir='ckpts',
logfile=None, **kwargs):
if logfile is None:
logfile = os.path.join(checkpoint_dir, 'log.txt')
device = next(gen.parameters()).device
zsampler = infinite_sampler(dists, combine_z, batch_size, device)
tsample = test_sampler(dists, combine_z, batch_size, test_batches, device)
with InstrumentedModel(gen) as G, InstrumentedModel(enc) as E:
G.retain_layer(gen_layer, detach=False)
nethook.set_requires_grad(False, G)
E.retain_layer(inv_layer, detach=False)
train_inverse(E, G, zsampler, inv_layer, gen_layer,
r_weight=1.0, ir_weight=1.0, test_sampler=tsample,
checkpoint_dir=checkpoint_dir,
checkpoint_selector=lambda x: x.model,
logfile=logfile, **kwargs)
def train_inverse(inv, gen, sampler, inv_layer=None, gen_layer=None,
z_weight=1.0, x_weight=1.0, r_weight=0.0, ir_weight=0.0, reg_weight=0.0,
adjust_z=None, regularize_z=None,
test_sampler=None, lr=0.01, lr_milestones=None,
epoch_batches=100, num_epochs=100, save_every=50,
logfile=None,
checkpoint_dir=None, checkpoint_selector=None, resume_from=None):
'''
To set this up:
inv and gen should both be instrumented models,
and inv layer and gen layer should be retained on both of them
without detach.
'''
if lr_milestones is None:
lr_milestones = []
optimizer = torch.optim.Adam(inv.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=lr_milestones, gamma=0.1)
ckpts = checkpoints.CheckpointIO(checkpoint_dir)
ckpts.register_modules(optimizer=optimizer, scheduler=scheduler,
inv=inv if not checkpoint_selector else checkpoint_selector(inv))
if resume_from is not None:
ckpts.load('ckpt_%d.pt' % resume_from)
start_epoch = resume_from + 1
else:
start_epoch = 0
def inv_loss(z):
return sum(loss * weight
for loss, weight in component_loss(z).values())
def component_loss(true_z):
observed_x = gen(true_z)
if gen_layer:
true_r = gen.retained_layer(gen_layer, clear=True)
estimated_z = inv(observed_x)
if inv_layer:
inverted_r = inv.retained_layer(inv_layer, clear=True)
if adjust_z:
fixed_z = adjust_z(estimated_z, true_z)
else:
fixed_z = estimated_z
if x_weight or r_weight:
reconstructed_x = gen(fixed_z)
if gen_layer:
reconstructed_r = gen.retained_layer(gen_layer, clear=True)
losses = OrderedDict()
if reg_weight:
losses['reg'] = (regularize_z(estimated_z, true_z), reg_weight)
if z_weight:
losses['z'] = (mse_loss(true_z, estimated_z), z_weight)
if ir_weight:
losses['ir'] = (cor_square_error(true_r, inverted_r), ir_weight)
if x_weight:
losses['x'] = (mse_loss(observed_x, reconstructed_x), x_weight)
if r_weight:
losses['r'] = (cor_square_error(true_r, reconstructed_r), r_weight)
return losses
with torch.no_grad():
for epoch, epoch_loader in pbar(
epoch_grouper(sampler, epoch_batches, num_epochs=1+num_epochs,
start_epoch=start_epoch),
total=(1+num_epochs-start_epoch)):
if epoch > 0:
for (z_batch,) in epoch_loader:
with torch.enable_grad():
optimizer.zero_grad()
loss = inv_loss(z_batch)
loss.backward()
pbar.post(l=loss.item())
optimizer.step()
scheduler.step()
if test_sampler is not None:
stats = MeanStats()
for (z_batch,) in test_sampler:
stats.add(component_loss(z_batch), len(z_batch))
logline = stats.logline(epoch)
pbar.print(logline)
if logfile is not None:
with open(logfile, 'a') as f:
f.write(logline + '\n')
elif epoch > 0:
pbar.print('%d: loss=%4g' % (epoch, loss.item()))
if epoch % save_every == 0 or epoch == num_epochs:
ckpts.save(epoch, 'ckpt_%d.pt' % epoch)
def infinite_sampler(dists, f, batch_size, device):
'''
Returns an infinite generator that runs through randomized z
batches, forever.
'''
while True:
zs = [dist.sample([batch_size]).to(device) for dist in dists]
r = zs[0] if f is None else f(*zs)
yield (r,)
def test_sampler(dists, f, batch_size, test_batches, device):
class TestSampler():
def __init__(self):
self.num_batches = test_batches
self.zs_batches = [
dist.sample([test_batches, batch_size]).to(device)
for dist in dists]
def __iter__(self):
for i in range(self.num_batches):
zs = [uncombined[i] for uncombined in self.zs_batches]
r = zs[0] if f is None else f(*zs)
yield (r,)
return TestSampler()
def epoch_grouper(loader, epoch_size, num_epochs=None, start_epoch=0):
'''
To use with an infinite training loader: groups the training data
batches into epochs of the given size.
'''
it = iter(loader)
epoch = start_epoch
while True:
chunk_it = itertools.islice(it, epoch_size)
try:
first_el = next(chunk_it)
except StopIteration:
return
yield epoch, itertools.chain((first_el,), chunk_it)
epoch += 1
if num_epochs is not None and epoch >= num_epochs:
return
def cor_square_error(x, y, eps=1e-12):
# Analogous to MSE, but in terms of Pearson's correlation
return (1.0 - torch.nn.functional.cosine_similarity(x, y, eps=eps)).mean()
class MeanStats:
def __init__(self):
self.tally = defaultdict(float)
self.count = 0
def add(self, c, size):
for n, (loss, weight) in c.items():
self.tally[n] += loss.item() * size
self.count += size
def summary(self):
return {n: v / self.count for n, v in self.tally.items()}
def logline(self, i=None):
prefix = '' if i is None else '%d: ' % i
return prefix + ' '.join('%s=%4g' % (n, v)
for n, v in self.summary().items())
|