File size: 11,527 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import torch, itertools, os
from collections import defaultdict, OrderedDict
from gan_training import checkpoints
from . import nethook, pbar, LBFGS
from seeing.nethook import InstrumentedModel
from torch.nn.functional import mse_loss

def refine_z_lbfgs(init_z, G, target_x, F=None, lambda_f=0,
        R=None, lambda_r=0, num_steps=1000, quiet=False,
        show=None, show_every=100):
    '''
    Starting at init_z, uss LBFGS to find a z for which G(z) -> target_x.
    By default uses l1_loss, but can also mse(F(G(z)), F(target_x))
    '''
    z = init_z.clone()
    parameters = [z]
    nethook.set_requires_grad(False, G)
    nethook.set_requires_grad(True, *parameters)
    if lambda_f:
        with torch.no_grad():
            target_f = F(target_x)
            nethook.set_requires_grad(False, F)

    optimizer = LBFGS.FullBatchLBFGS(parameters)

    def closure():
        optimizer.zero_grad()
        current_x = G(z)
        loss = torch.nn.functional.l1_loss(target_x, current_x)
        if lambda_f:
            loss += torch.nn.functional.mse_loss(target_f, F(current_x)
                    ) * lambda_f
        if lambda_r:
            loss += R(z) * lambda_r
        return loss

    pb = (lambda x: x) if quiet else pbar

    with torch.enable_grad():
        for step_num in pb(range(num_steps + 1)):
            if step_num == 0:
                loss = closure()
                loss.backward()
                lr, F_eval, G_eval = 0, 0, 0
            else:
                options = {'closure': closure, 'current_loss': loss,
                        'max_ls': 10}
                loss, _, lr, _, _, _, _, _ = optimizer.step(options)
            if show and (step_num % show_every == 0):
                with torch.no_grad():
                    show(x=G(z), z=z, loss=loss, it=step_num)

    return z

def split_gen_layers(enc, gen, layername):
    '''
    Given an inverter layername, splits the generator sequence into three:
    (1) generator sequence before the layers to be inverted
    (2) sequence of generator layers to be inverted by enc[layername]
    (3) generator sequence after the layers to be inverted
    '''
    info = list(enc.inverse_info().items())
    index = [i for i, (n, v) in enumerate(info) if n == layername][0]
    upto_layer = info[index - 1][1]['first_layer'] if index > 0 else None
    args = info[index][1]
    first_layer = args['first_layer']
    layers = nethook.subsequence(gen,
         first_layer=first_layer, upto_layer=upto_layer)
    prev_layers = nethook.subsequence(gen, upto_layer=first_layer)
    next_layers = (nethook.subsequence(gen, first_layer=upto_layer) if
            upto_layer else torch.nn.Sequential())
    return prev_layers, layers, next_layers

def last_gen_layername(enc, gen, layername):
    _, layers, _ = split_gen_layers(enc, gen, layername)
    return [n for n, c in layers.named_children()][-1]

def layers_after(enc, layername):
    layernames = [n for n, c in enc.named_children()]
    index = layernames.index(layername)
    if index + 1 < len(layernames):
        return nethook.subsequence(enc, layernames[index + 1])
    else:
        return torch.nn.Sequential()

def train_inv_layer(enc, gen, dists, layername, combine_z=None,
        batch_size=100, test_batches=10, checkpoint_dir='ckpts',
        resume_from=None, logfile=None, **kwargs):
    '''
    Inverts a single layer of a multilayer inverter.
    Both enc and should be a nn.Sequential subclasses, and
    layername specifies the layer of enc to train.  That layer
    of enc will be trained to invert a set of gen layers.
    Which layers specifically are determined by split_gen_layers,
    which depends on enc.inverse_info(), to specify how each inverter
    layer relates to layers of gen.
    '''
    if logfile is None:
        logfile = os.path.join(checkpoint_dir, 'log.txt')
    prev_layers, layers, next_layers = split_gen_layers(enc, gen, layername)
    inv = getattr(enc, layername)
    device = next(gen.parameters()).device
    args = enc.inverse_info()[layername]
    kwargs_out = {k: v for k, v in args.items() if k != 'first_layer'}
    kwargs_out.update(kwargs)
    if 'x_weight' not in kwargs_out:
        kwargs_out['x_weight'] = 0
    nethook.set_requires_grad(False, layers, prev_layers, next_layers)
    if combine_z is not None:
        nethook.set_requires_grad(False, combine_z)
        prev_layers_old = prev_layers
        prev_layers = lambda *a: prev_layers_old(combine_z(*a))
    zsampler = infinite_sampler(dists, prev_layers, batch_size, device)
    tsample = test_sampler(dists, prev_layers, batch_size, test_batches, device)
    train_inverse(inv, layers, zsampler, test_sampler=tsample,
            resume_from=resume_from,
            checkpoint_dir=checkpoint_dir, logfile=logfile,
            **kwargs_out)

def train_inv_joint(enc, gen, dists, combine_z=None,
        inv_layer=None, gen_layer=None,
        batch_size=50, test_batches=10,
        checkpoint_dir='ckpts',
        logfile=None, **kwargs):
    if logfile is None:
        logfile = os.path.join(checkpoint_dir, 'log.txt')
    device = next(gen.parameters()).device
    zsampler = infinite_sampler(dists, combine_z, batch_size, device)
    tsample = test_sampler(dists, combine_z, batch_size, test_batches, device)

    with InstrumentedModel(gen) as G, InstrumentedModel(enc) as E:
        G.retain_layer(gen_layer, detach=False)
        nethook.set_requires_grad(False, G)
        E.retain_layer(inv_layer, detach=False)
        train_inverse(E, G, zsampler, inv_layer, gen_layer,
            r_weight=1.0, ir_weight=1.0, test_sampler=tsample,
            checkpoint_dir=checkpoint_dir,
            checkpoint_selector=lambda x: x.model,
            logfile=logfile, **kwargs)

def train_inverse(inv, gen, sampler, inv_layer=None, gen_layer=None,
        z_weight=1.0, x_weight=1.0, r_weight=0.0, ir_weight=0.0, reg_weight=0.0,
        adjust_z=None, regularize_z=None,
        test_sampler=None, lr=0.01, lr_milestones=None,
        epoch_batches=100, num_epochs=100, save_every=50,
        logfile=None,
        checkpoint_dir=None, checkpoint_selector=None, resume_from=None):
    '''
    To set this up:
    inv and gen should both be instrumented models,
    and inv layer and gen layer should be retained on both of them
    without detach.
    '''
    if lr_milestones is None:
        lr_milestones = []
    optimizer = torch.optim.Adam(inv.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer, milestones=lr_milestones, gamma=0.1)

    ckpts = checkpoints.CheckpointIO(checkpoint_dir)
    ckpts.register_modules(optimizer=optimizer, scheduler=scheduler,
            inv=inv if not checkpoint_selector else checkpoint_selector(inv))
    if resume_from is not None:
        ckpts.load('ckpt_%d.pt' % resume_from)
        start_epoch = resume_from + 1
    else:
        start_epoch = 0

    def inv_loss(z):
        return sum(loss * weight
                for loss, weight in component_loss(z).values())

    def component_loss(true_z):
        observed_x = gen(true_z)
        if gen_layer:
            true_r = gen.retained_layer(gen_layer, clear=True)
        estimated_z = inv(observed_x)
        if inv_layer:
            inverted_r = inv.retained_layer(inv_layer, clear=True)
        if adjust_z:
            fixed_z = adjust_z(estimated_z, true_z)
        else:
            fixed_z = estimated_z
        if x_weight or r_weight:
            reconstructed_x = gen(fixed_z)
        if gen_layer:
            reconstructed_r = gen.retained_layer(gen_layer, clear=True)
        losses = OrderedDict()
        if reg_weight:
            losses['reg'] = (regularize_z(estimated_z, true_z), reg_weight)
        if z_weight:
            losses['z'] = (mse_loss(true_z, estimated_z), z_weight)
        if ir_weight:
            losses['ir'] = (cor_square_error(true_r, inverted_r), ir_weight)
        if x_weight:
            losses['x'] = (mse_loss(observed_x, reconstructed_x), x_weight)
        if r_weight:
            losses['r'] = (cor_square_error(true_r, reconstructed_r), r_weight)
        return losses

    with torch.no_grad():
        for epoch, epoch_loader in pbar(
                epoch_grouper(sampler, epoch_batches, num_epochs=1+num_epochs,
                    start_epoch=start_epoch),
                total=(1+num_epochs-start_epoch)):
            if epoch > 0:
                for (z_batch,) in epoch_loader:
                    with torch.enable_grad():
                        optimizer.zero_grad()
                        loss = inv_loss(z_batch)
                        loss.backward()
                        pbar.post(l=loss.item())
                        optimizer.step()
                scheduler.step()
            if test_sampler is not None:
                stats = MeanStats()
                for (z_batch,) in test_sampler:
                    stats.add(component_loss(z_batch), len(z_batch))
                logline = stats.logline(epoch)
                pbar.print(logline)
                if logfile is not None:
                    with open(logfile, 'a') as f:
                        f.write(logline + '\n')
            elif epoch > 0:
                pbar.print('%d: loss=%4g' % (epoch, loss.item()))
            if epoch % save_every == 0 or epoch == num_epochs:
                ckpts.save(epoch, 'ckpt_%d.pt' % epoch)

def infinite_sampler(dists, f, batch_size, device):
    '''
    Returns an infinite generator that runs through randomized z
    batches, forever.
    '''
    while True:
        zs = [dist.sample([batch_size]).to(device) for dist in dists]
        r = zs[0] if f is None else f(*zs)
        yield (r,)

def test_sampler(dists, f, batch_size, test_batches, device):
    class TestSampler():
        def __init__(self):
            self.num_batches = test_batches
            self.zs_batches = [
                    dist.sample([test_batches, batch_size]).to(device)
                    for dist in dists]
        
        def __iter__(self):
            for i in range(self.num_batches):
                zs = [uncombined[i] for uncombined in self.zs_batches]
                r = zs[0] if f is None else f(*zs)
                yield (r,)
    return TestSampler()

def epoch_grouper(loader, epoch_size, num_epochs=None, start_epoch=0):
    '''
    To use with an infinite training loader: groups the training data
    batches into epochs of the given size.
    '''
    it = iter(loader)
    epoch = start_epoch
    while True:
        chunk_it = itertools.islice(it, epoch_size)
        try:
            first_el = next(chunk_it)
        except StopIteration:
            return
        yield epoch, itertools.chain((first_el,), chunk_it)
        epoch += 1
        if num_epochs is not None and epoch >= num_epochs:
            return

def cor_square_error(x, y, eps=1e-12):
    # Analogous to MSE, but in terms of Pearson's correlation
    return (1.0 - torch.nn.functional.cosine_similarity(x, y, eps=eps)).mean()


class MeanStats:
    def __init__(self):
        self.tally = defaultdict(float)
        self.count = 0

    def add(self, c, size):
        for n, (loss, weight) in c.items():
            self.tally[n] += loss.item() * size
        self.count += size

    def summary(self):
        return {n: v / self.count for n, v in self.tally.items()}

    def logline(self, i=None):
        prefix = '' if i is None else '%d: ' % i
        return prefix + ' '.join('%s=%4g' % (n, v)
                for n, v in self.summary().items())