Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from rdkit import Chem
|
4 |
+
from rdkit.Chem import AllChem
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
# Load cell lines data and top genes
|
8 |
+
cell_lines = pd.read_csv('gene_expression.csv', index_col=0)
|
9 |
+
with open('2128_genes.pkl', 'rb') as f:
|
10 |
+
top_genes = pickle.load(f)
|
11 |
+
|
12 |
+
# Load model
|
13 |
+
with open('xgboost.pkl', 'rb') as f:
|
14 |
+
model = pickle.load(f)
|
15 |
+
|
16 |
+
filtered_cell_lines = cell_lines[cell_lines.columns.intersection(top_genes)]
|
17 |
+
|
18 |
+
# Define the smiles_to_fingerprint function
|
19 |
+
def smiles_to_fingerprint(smiles):
|
20 |
+
mol = Chem.MolFromSmiles(smiles)
|
21 |
+
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=1024)
|
22 |
+
return fp
|
23 |
+
|
24 |
+
# Define a function that will be called when the user makes a prediction
|
25 |
+
def predict(smiles_notation):
|
26 |
+
# Transform SMILES to fingerprint
|
27 |
+
fingerprint = smiles_to_fingerprint(smiles_notation)
|
28 |
+
|
29 |
+
# Convert the fingerprint to a DataFrame with one row and columns representing bits
|
30 |
+
fingerprint_df = pd.DataFrame([list(fingerprint)], columns=range(1024)).apply(lambda x: pd.Series({f'fp{str(i)}': val for i, val in enumerate(x)}), axis=1)
|
31 |
+
|
32 |
+
# Merge the fingerprint with each row of filtered_cell_lines
|
33 |
+
fingerprint_df['common_key'] = 1
|
34 |
+
filtered_cell_lines['common_key'] = 1
|
35 |
+
merged_data = pd.merge(filtered_cell_lines, fingerprint_df, on='common_key').drop('common_key', axis=1)
|
36 |
+
|
37 |
+
# Perform any additional processing or prediction based on the merged_data
|
38 |
+
predicts = model.predict(merged_data)
|
39 |
+
|
40 |
+
#merge predicts with cell lines
|
41 |
+
predicts = pd.DataFrame({'IC50': predicts,
|
42 |
+
'Cell_line': filtered_cell_lines.index})
|
43 |
+
|
44 |
+
#sort by IC50 (only lowest 20)
|
45 |
+
predicts = predicts.sort_values(by='IC50').head(10)
|
46 |
+
|
47 |
+
return predicts
|
48 |
+
|
49 |
+
# Define the Gradio interface
|
50 |
+
iface = gr.Interface(
|
51 |
+
fn=predict,
|
52 |
+
inputs=gr.Textbox(value="COc1cc(O)c2c(c1)C=CCC(O)C(O)C(=O)C=CCC(C)OC2=O", lines=1, label="Enter drug in SMILES notation"),
|
53 |
+
outputs=gr.Dataframe(headers=['IC50', 'Cell_line'], type="numpy",label = 'Top 10 Cell Lines with lowest IC50 (GDSC2 dataset)' , datatype="number", row_count=10, col_count=2),
|
54 |
+
title="Drug Response Prediction",
|
55 |
+
)
|
56 |
+
|
57 |
+
# Launch the Gradio interface
|
58 |
+
iface.launch(share=True)
|