import gradio as gr from astropy.io import fits import matplotlib.pyplot as plt import numpy as np import io from PIL import Image import astropy.units as u from astropy.wcs import WCS from astropy.coordinates import SkyCoord from astropy import coordinates as coord from astropy.wcs.utils import skycoord_to_pixel from astroquery.simbad import Simbad import pandas as pd import matplotlib.patches as patches # Increase the limit (set to a value larger than the pixel count of your image) Image.MAX_IMAGE_PIXELS = None plt.style.use('dark_background') # Initialize globals global_dataframe = pd.DataFrame() global_data = None global_header = None def show_csv(file): """ Displays the uploaded CSV file as a table. """ global global_dataframe try: # Read the CSV file into a pandas DataFrame df = pd.read_csv(file.name, index_col=0) global_dataframe = df # Store the dataframe globally for filtering # Extract unique types from the "type" column if "TYPE" in df.columns: unique_types = df["TYPE"].unique().tolist() return df, gr.CheckboxGroup(label="Select Catalogue", choices=unique_types, value=unique_types, interactive=True) else: return "Error: CSV does not contain a 'type' column.", None except Exception as e: return f"Error: {str(e)}", None # Define a function to be called when the button is clicked def query_update_table(): """ Displays the uploaded CSV file as a table. """ global global_dataframe, global_header, global_data try: # Read the CSV file into a pandas DataFrame #df = pd.read_csv('dataframe.csv', index_col=0) Simbad.TIMEOUT = 120 # Define the specific coordinates wcs = WCS(global_header).dropaxis(2) center_ra = global_header['CRVAL1'] center_dec = global_header['CRVAL2'] target_coord = SkyCoord(ra=center_ra, dec=center_dec, unit=(u.deg, u.deg), frame='icrs') print(center_ra, center_dec) # define the search radius radius_deg = max([abs(global_header['CDELT1']),abs(global_header['CDELT2'])])*max([global_header['NAXIS1'],global_header['NAXIS2']]) radius_deg *= 1 # Set up the query criteria if target_coord.dec.deg > 0: custom_query = f"region(CIRCLE, {target_coord.ra.deg} +{target_coord.dec.deg}, {radius_deg}d)" else: custom_query = f"region(CIRCLE, {target_coord.ra.deg} {target_coord.dec.deg}, {radius_deg}d)" print(f'Query={custom_query}') result_table = Simbad.query_criteria(custom_query, otype='galaxy') print("received feedback from simbad!!!") print(result_table) df = result_table.to_pandas().set_index('main_id') print(df.columns) df['Pixel_Position'] = [skycoord_to_pixel(SkyCoord(v[0],v[1], unit=(u.deg, u.deg), frame='icrs'), wcs) for v in df[['ra','dec']].values] print(df['Pixel_Position']) df['px'] = df['Pixel_Position'].apply(lambda x: int(x[0])) df['py'] = df['Pixel_Position'].apply(lambda x: int(x[1])) mask = (df.px>0)&(df.px< global_data.shape[1])&(df.py>0)&(df.py 0)&(filtered_df.px+patch_size//2 < global_data.shape[1])&(filtered_df.py-patch_size//2 > 0)&(filtered_df.py+patch_size//2 < global_data.shape[0]) filtered_df = filtered_df[mask] else: filtered_df = None if not filtered_df is None: # Sort the dataframe based on the sorting method if sort_method == "by Catalogue": filtered_df = filtered_df.sort_values(by=['px', 'py'], ascending=[True, True]) filtered_df = filtered_df.sort_values(by='TYPE', ascending=True).reset_index(drop=True) elif sort_method == "by x": filtered_df = filtered_df.sort_values(by=['px', 'py'], ascending=[True, True]).reset_index(drop=True) elif sort_method == "by y": filtered_df = filtered_df.sort_values(by=['py', 'px'], ascending=[True, True]).reset_index(drop=True) try: wcs = WCS(global_header).dropaxis(2) ratio = global_data.shape[0]/global_data.shape[1] # Plot WCS fig = plt.figure(figsize=(ratio*scale,scale)) ax = fig.add_subplot(projection=wcs, label='overlays') ax.imshow(global_data, origin='lower') #if not filtered_df is None: # filtered_df.plot.scatter(x='px', y='py', ax=ax, s=15, c=patch_color) if "with Grid" in selected_axis_options: ax.coords.grid(True, color='white', ls='-', alpha=.5) if "with Axis Annotation" in selected_axis_options: ax.coords[0].set_axislabel('Right Ascension (J2000)', fontsize=fontsize+2) ax.coords[1].set_axislabel('Declination (J2000)', fontsize=fontsize+2) else: ax.axis('off') plt.title(title, fontsize=fontsize+4) if not filtered_df is None: all_patches = [] for i,row in filtered_df.iterrows(): rect = patches.Rectangle((row.px-patch_size//2, row.py-patch_size//2), patch_size, patch_size, alpha=alpha, linewidth=linewidth, edgecolor=patch_color, facecolor='none') ax.add_patch(rect) ax.text(row.px,row.py+patch_size//2,str(i+1), ha='center',va='bottom',color=patch_color,fontsize=fontsize) patch = global_data[row.py-patch_size//2:row.py+patch_size//2,row.px-patch_size//2:row.px+patch_size//2] all_patches.append(patch) plt.tight_layout() # Convert the plot to an image buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=.1, dpi=200) plt.close(fig) buf.seek(0) # Convert buffer to PIL Image image = Image.open(buf) if not filtered_df is None: m = num_rows n = int(np.ceil(len(filtered_df)/m)) second_scale=max([1,scale//3]) fig, axarr = plt.subplots(n,m,figsize=(m*second_scale,n*second_scale)) for i, row in filtered_df.iterrows(): ax = axarr[i//m,i%m] ax.imshow(all_patches[i][::-1]) ax.set_title(row.main_id, fontsize=fontsize-2) ax.set_xticks([]) ax.set_yticks([]) ax.text(2,2,str(i+1)[:30],ha='left',va='top',fontsize=fontsize+6) for i in np.arange(len(all_patches),m*n): ax = axarr[i//m,i%m] ax.axis('off') plt.tight_layout() # Convert the plot to an image second_buf = io.BytesIO() plt.savefig(second_buf, format='png', bbox_inches='tight', pad_inches=.1, dpi=200) plt.close(fig) second_buf.seek(0) # Convert buffer to PIL Image patches_image = Image.open(second_buf) return filtered_df, image, patches_image else: return filtered_df, image, None except Exception as e: return f"Error: {str(e)}" # Gradio interface with gr.Blocks(css=".btn-green {background-color: green; color: white;}") as gui: gr.Markdown("# What's in my image?") # Options Area with gr.Row() as options_gui: num_rows = gr.Number(label="Number of Rows", value=16, minimum=2, precision=0, interactive=True) title = gr.Textbox(label="Image Title", value="Custom Title", interactive=True) patch_size = gr.Slider(label="Patch Size", minimum=16, maximum=128, step=8, value=32, interactive=True) fontsize = gr.Slider(label="Fontsize", minimum=6, maximum=26, step=1, value=10, interactive=True) alpha = gr.Slider(label="Alpha", minimum=0., maximum=1., step=.1, value=1., interactive=True) linewidth = gr.Slider(label="Linewidth", minimum=1, maximum=4, step=1, value=1, interactive=True) scale = gr.Slider(label="Scale", minimum=1, maximum=20, step=1, value=10, interactive=True) patch_color = gr.ColorPicker(label="Patch Color", value="#FFFFFF", interactive=True) sort_method = gr.Dropdown(label="Sorting Method", choices=["by Catalogue", "by x", "by y"], value="by Catalogue", interactive=True) axis_options = gr.CheckboxGroup( label="Select options", choices=["with Grid", "with Axis Annotation"], value=["with Grid", "with Axis Annotation"], # Preselected values interactive=True # Makes it interactive ) gr.Markdown("Upload a plate solved `.fits` file (32 bit) to display its content.") file_input = gr.File(label="Upload .fits File", type="filepath") #file_input_csv = gr.File(label="Upload .csv File") greet_button = gr.Button("Query Simbad for Galaxies") # Create the button fits_image = gr.Image(label="Input Image", type="pil") type_checkboxes = gr.CheckboxGroup(label="Select Catalogue") patches_image = gr.Image(label="Patches Image", type="pil") csv_table = gr.DataFrame(label="CSV Table") track_options = [type_checkboxes, title, axis_options, num_rows, patch_size, fontsize, alpha, linewidth, scale, patch_color, sort_method] file_input.change(load_fits_image, inputs=[file_input] + track_options, outputs=[csv_table,fits_image,patches_image]) for option_i in track_options: option_i.change(update_images_and_tables, inputs=track_options, outputs=[csv_table,fits_image,patches_image]) # Display CSV table #file_input_csv.change(show_csv, # inputs=file_input_csv, # outputs=[csv_table, type_checkboxes]) greet_button.click(query_update_table, inputs=None, outputs=[csv_table, type_checkboxes]) # Update the selected checkboxes change type_checkboxes.change(update_images_and_tables, inputs=track_options, outputs=[csv_table,fits_image,patches_image]) gui.launch(debug=True)