import streamlit as st import pandas as pd import time import matplotlib.pyplot as plt from openpyxl.utils.dataframe import dataframe_to_rows import io from rapidfuzz import fuzz import os from openpyxl import load_workbook from langchain.prompts import PromptTemplate from langchain_core.runnables import RunnablePassthrough from io import StringIO, BytesIO import sys import contextlib from langchain_openai import ChatOpenAI # Updated import import pdfkit from jinja2 import Template import time from tenacity import retry, stop_after_attempt, wait_exponential from typing import Optional import torch from transformers import ( pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoModelForCausalLM # 4 Qwen ) from threading import Event import threading from queue import Queue from deep_translator import GoogleTranslator from googletrans import Translator as LegacyTranslator class ProcessControl: def __init__(self): self.pause_event = Event() self.stop_event = Event() self.pause_event.set() # Start in non-paused state def pause(self): self.pause_event.clear() def resume(self): self.pause_event.set() def stop(self): self.stop_event.set() self.pause_event.set() # Ensure not stuck in pause def reset(self): self.stop_event.clear() self.pause_event.set() def is_paused(self): return not self.pause_event.is_set() def is_stopped(self): return self.stop_event.is_set() def wait_if_paused(self): self.pause_event.wait() class FallbackLLMSystem: def __init__(self): """Initialize fallback models for event detection and reasoning""" try: # Initialize MT5 model (multilingual T5) self.model_name = "google/mt5-small" self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name) # Set device self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = self.model.to(self.device) st.success(f"Запустил MT5-модель на {self.device}") except Exception as e: st.error(f"Error initializing MT5: {str(e)}") raise def detect_events(self, text, entity): """Detect events using MT5""" # Initialize default return values event_type = "Нет" summary = "" try: prompt = f"""Analyze news about company {entity}: {text} Classify event type as one of: - Отчетность (financial reports) - РЦБ (securities market events) - Суд (legal actions) - Нет (no significant events) Format response as: Тип: [type] Краткое описание: [summary]""" inputs = self.tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=512 ).to(self.device) outputs = self.model.generate( **inputs, max_length=200, num_return_sequences=1, do_sample=False, pad_token_id=self.tokenizer.pad_token_id ) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) # Parse response if "Тип:" in response and "Краткое описание:" in response: parts = response.split("Краткое описание:") type_part = parts[0] if "Тип:" in type_part: event_type = type_part.split("Тип:")[1].strip() # Validate event type valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"] if event_type not in valid_types: event_type = "Нет" if len(parts) > 1: summary = parts[1].strip() return event_type, summary except Exception as e: st.warning(f"Event detection error: {str(e)}") return "Нет", "Ошибка анализа" def ensure_groq_llm(): """Initialize Groq LLM for impact estimation""" try: if 'groq_key' not in st.secrets: st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.") return None return ChatOpenAI( base_url="https://api.groq.com/openai/v1", model="llama-3.1-70b-versatile", openai_api_key=st.secrets['groq_key'], temperature=0.0 ) except Exception as e: st.error(f"Error initializing Groq LLM: {str(e)}") return None def estimate_impact(llm, news_text, entity): """ Estimate impact using Groq LLM regardless of the main model choice. Falls back to the provided LLM if Groq initialization fails. """ # Initialize default return values impact = "Неопределенный эффект" reasoning = "Не удалось получить обоснование" try: # Always try to use Groq first groq_llm = ensure_groq_llm() working_llm = groq_llm if groq_llm is not None else llm template = """ You are a financial analyst. Analyze this news piece about {entity} and assess its potential impact. News: {news} Classify the impact into one of these categories: 1. "Значительный риск убытков" (Significant loss risk) 2. "Умеренный риск убытков" (Moderate loss risk) 3. "Незначительный риск убытков" (Minor loss risk) 4. "Вероятность прибыли" (Potential profit) 5. "Неопределенный эффект" (Uncertain effect) Provide a brief, fact-based reasoning for your assessment. Format your response exactly as: Impact: [category] Reasoning: [explanation in 2-3 sentences] """ prompt = PromptTemplate(template=template, input_variables=["entity", "news"]) chain = prompt | working_llm response = chain.invoke({"entity": entity, "news": news_text}) # Extract content from response response_text = response.content if hasattr(response, 'content') else str(response) if "Impact:" in response_text and "Reasoning:" in response_text: impact_part, reasoning_part = response_text.split("Reasoning:") impact_temp = impact_part.split("Impact:")[1].strip() # Validate impact category valid_impacts = [ "Значительный риск убытков", "Умеренный риск убытков", "Незначительный риск убытков", "Вероятность прибыли", "Неопределенный эффект" ] if impact_temp in valid_impacts: impact = impact_temp reasoning = reasoning_part.strip() except Exception as e: st.warning(f"Error in impact estimation: {str(e)}") return impact, reasoning class QwenSystem: def __init__(self): """Initialize Qwen 2.5 Coder model""" try: self.model_name = "Qwen/Qwen2.5-Coder-32B-Instruct" # Initialize model with auto settings self.model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype="auto", device_map="auto" ) self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) st.success(f"запустил Qwen2.5 model") except Exception as e: st.error(f"ошибка запуска Qwen2.5: {str(e)}") raise def invoke(self, messages): """Process messages using Qwen's chat template""" try: # Prepare messages with system prompt chat_messages = [ {"role": "system", "content": "You are wise financial analyst. You are a helpful assistant."} ] chat_messages.extend(messages) # Apply chat template text = self.tokenizer.apply_chat_template( chat_messages, tokenize=False, add_generation_prompt=True ) # Prepare model inputs model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) # Generate response generated_ids = self.model.generate( **model_inputs, max_new_tokens=512, pad_token_id=self.tokenizer.pad_token_id, eos_token_id=self.tokenizer.eos_token_id ) # Extract new tokens generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] # Decode response response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] # Return in ChatOpenAI-compatible format return type('Response', (), {'content': response})() except Exception as e: st.warning(f"Qwen generation error: {str(e)}") raise class ProcessingUI: def __init__(self): if 'control' not in st.session_state: st.session_state.control = ProcessControl() if 'negative_container' not in st.session_state: st.session_state.negative_container = st.empty() if 'events_container' not in st.session_state: st.session_state.events_container = st.empty() # Create control buttons col1, col2 = st.columns(2) with col1: if st.button("⏸️ Пауза/Возобновить" if not st.session_state.control.is_paused() else "▶️ Возобновить", key="pause_button"): if st.session_state.control.is_paused(): st.session_state.control.resume() else: st.session_state.control.pause() with col2: if st.button("⏹️ Стоп и всё", key="stop_button"): st.session_state.control.stop() self.progress_bar = st.progress(0) self.status = st.empty() def update_progress(self, current, total): progress = current / total self.progress_bar.progress(progress) self.status.text(f"Обрабатываем {current} из {total} сообщений...") def show_negative(self, entity, headline, analysis, impact=None): with st.session_state.negative_container: st.markdown(f"""
⚠️ Negative Alert:
Entity: {entity}
News: {headline}
Analysis: {analysis}
{f"Impact: {impact}
" if impact else ""}
""", unsafe_allow_html=True) def show_event(self, entity, event_type, headline): with st.session_state.events_container: st.markdown(f"""
🔔 Event Detected:
Entity: {entity}
Type: {event_type}
News: {headline}
""", unsafe_allow_html=True) class EventDetectionSystem: def __init__(self): try: # Initialize models with specific labels self.finbert = pipeline( "text-classification", model="ProsusAI/finbert", return_all_scores=True ) self.business_classifier = pipeline( "text-classification", model="yiyanghkust/finbert-tone", return_all_scores=True ) st.success("BERT-модели запущены для детекции новостей") except Exception as e: st.error(f"Ошибка запуска BERT: {str(e)}") raise def detect_event_type(self, text, entity): event_type = "Нет" summary = "" try: # Ensure text is properly formatted text = str(text).strip() if not text: return "Нет", "Empty text" # Get predictions finbert_scores = self.finbert( text, truncation=True, max_length=512 ) business_scores = self.business_classifier( text, truncation=True, max_length=512 ) # Get highest scoring predictions finbert_pred = max(finbert_scores[0], key=lambda x: x['score']) business_pred = max(business_scores[0], key=lambda x: x['score']) # Map to event types with confidence threshold confidence_threshold = 0.6 max_confidence = max(finbert_pred['score'], business_pred['score']) if max_confidence >= confidence_threshold: if any(term in text.lower() for term in ['отчет', 'выручка', 'прибыль', 'ebitda']): event_type = "Отчетность" summary = f"Финансовая отчетность (confidence: {max_confidence:.2f})" elif any(term in text.lower() for term in ['облигаци', 'купон', 'дефолт', 'реструктуризац']): event_type = "РЦБ" summary = f"Событие РЦБ (confidence: {max_confidence:.2f})" elif any(term in text.lower() for term in ['суд', 'иск', 'арбитраж']): event_type = "Суд" summary = f"Судебное разбирательство (confidence: {max_confidence:.2f})" if event_type != "Нет": summary += f"\nКомпания: {entity}" return event_type, summary except Exception as e: st.warning(f"Event detection error: {str(e)}") return "Нет", "Error in event detection" class TranslationSystem: def __init__(self): """Initialize translation system using Helsinki NLP model with fallback options""" try: self.translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en") # Initialize fallback translator self.fallback_translator = GoogleTranslator(source='ru', target='en') self.legacy_translator = LegacyTranslator() st.success("Запустил систему перевода") except Exception as e: st.error(f"Ошибка запуска перевода: {str(e)}") raise def _split_into_chunks(self, text: str, max_length: int = 450) -> list: """Split text into chunks while preserving word boundaries""" words = text.split() chunks = [] current_chunk = [] current_length = 0 for word in words: word_length = len(word) if current_length + word_length + 1 <= max_length: current_chunk.append(word) current_length += word_length + 1 else: if current_chunk: chunks.append(' '.join(current_chunk)) current_chunk = [word] current_length = word_length if current_chunk: chunks.append(' '.join(current_chunk)) return chunks def _translate_chunk_with_retries(self, chunk: str, max_retries: int = 3) -> str: """Attempt translation with multiple fallback options""" if not chunk or not chunk.strip(): return "" for attempt in range(max_retries): try: # First try Helsinki NLP result = self.translator(chunk, max_length=512) if result and isinstance(result, list) and len(result) > 0: translated = result[0].get('translation_text') if translated and isinstance(translated, str): return translated # First fallback: Google Translator translated = self.fallback_translator.translate(chunk) if translated and isinstance(translated, str): return translated # Second fallback: Legacy Google Translator translated = self.legacy_translator.translate(chunk, src='ru', dest='en').text if translated and isinstance(translated, str): return translated except Exception as e: if attempt == max_retries - 1: st.warning(f"Попробовал перевести {max_retries} раз, не преуспел: {str(e)}") time.sleep(1 * (attempt + 1)) # Exponential backoff return chunk # Return original text if all translation attempts fail def translate_text(self, text: str) -> str: """Translate text with robust error handling and validation""" # Input validation if pd.isna(text) or not isinstance(text, str): return str(text) if pd.notna(text) else "" text = str(text).strip() if not text: return "" try: # Split into manageable chunks chunks = self._split_into_chunks(text) translated_chunks = [] # Process each chunk with validation for chunk in chunks: if not chunk.strip(): continue translated_chunk = self._translate_chunk_with_retries(chunk) if translated_chunk: # Only add non-empty translations translated_chunks.append(translated_chunk) time.sleep(0.1) # Rate limiting # Final validation of results if not translated_chunks: return text # Return original if no translations succeeded result = ' '.join(translated_chunks) return result if result.strip() else text except Exception as e: st.warning(f"Translation error: {str(e)}") return text # Return original text on error def process_file(uploaded_file, model_choice, translation_method=None): df = None try: # Initialize UI and control systems ui = ProcessingUI() translator = TranslationSystem() event_detector = EventDetectionSystem() # Load and prepare data df = pd.read_excel(uploaded_file, sheet_name='Публикации') llm = init_langchain_llm(model_choice) # Initialize Groq for impact estimation groq_llm = ensure_groq_llm() if groq_llm is None: st.warning("Failed to initialize Groq LLM for impact estimation. Using fallback model.") # Prepare dataframe text_columns = ['Объект', 'Заголовок', 'Выдержки из текста'] for col in text_columns: df[col] = df[col].fillna('').astype(str).apply(lambda x: x.strip()) # Initialize required columns df['Translated'] = '' df['Sentiment'] = '' df['Impact'] = '' df['Reasoning'] = '' df['Event_Type'] = '' df['Event_Summary'] = '' # Deduplication original_count = len(df) df = df.groupby('Объект', group_keys=False).apply( lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65) ).reset_index(drop=True) st.write(f"Из {original_count} сообщений удалено {original_count - len(df)} дубликатов.") # Process rows total_rows = len(df) processed_rows = 0 for idx, row in df.iterrows(): # Check for stop/pause if st.session_state.control.is_stopped(): st.warning("Обработку остановили") break st.session_state.control.wait_if_paused() if st.session_state.control.is_paused(): st.info("Обработка на паузе. Можно возобновить.") continue try: # Translation translated_text = translator.translate_text(row['Выдержки из текста']) df.at[idx, 'Translated'] = translated_text # Sentiment analysis sentiment = analyze_sentiment(translated_text) df.at[idx, 'Sentiment'] = sentiment # Event detection using BERT event_type, event_summary = event_detector.detect_event_type( translated_text, row['Объект'] ) df.at[idx, 'Event_Type'] = event_type df.at[idx, 'Event_Summary'] = event_summary # Show events in real-time if event_type != "Нет": ui.show_event( row['Объект'], event_type, row['Заголовок'] ) # Handle negative sentiment if sentiment == "Negative": try: impact, reasoning = estimate_impact( groq_llm if groq_llm is not None else llm, translated_text, row['Объект'] ) except Exception as e: impact = "Неопределенный эффект" reasoning = "Error in impact estimation" if 'rate limit' in str(e).lower(): st.warning("Лимит запросов исчерпался. Иду на fallback.") df.at[idx, 'Impact'] = impact df.at[idx, 'Reasoning'] = reasoning # Show negative alert in real-time ui.show_negative( row['Объект'], row['Заголовок'], reasoning, impact ) # Update progress processed_rows += 1 ui.update_progress(processed_rows, total_rows) except Exception as e: st.warning(f"Ошибка в обработке ряда {idx + 1}: {str(e)}") continue time.sleep(0.1) # Handle stopped processing if st.session_state.control.is_stopped() and len(df) > 0: st.warning("Обработку остановили. Показываю частичные результаты.") if st.button("Скачать частичный результат"): output = create_output_file(df, uploaded_file, llm) st.download_button( label="📊 Скачать частичный результат", data=output, file_name="partial_analysis.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" ) return df except Exception as e: st.error(f"Ошибка в обработке файла: {str(e)}") return None def translate_reasoning_to_russian(llm, text): template = """ Translate this English explanation to Russian, maintaining a formal business style: "{text}" Your response should contain only the Russian translation. """ prompt = PromptTemplate(template=template, input_variables=["text"]) chain = prompt | llm | RunnablePassthrough() response = chain.invoke({"text": text}) # Handle different response types if hasattr(response, 'content'): return response.content.strip() elif isinstance(response, str): return response.strip() else: return str(response).strip() def create_download_section(excel_data, pdf_data): st.markdown("""
📥 Результаты анализа доступны для скачивания:
""", unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: if excel_data is not None: st.download_button( label="📊 Скачать Excel отчет", data=excel_data, file_name="результат_анализа.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", key="excel_download" ) else: st.error("Ошибка при создании Excel файла") def display_sentiment_results(row, sentiment, impact=None, reasoning=None): if sentiment == "Negative": st.markdown(f"""
Объект: {row['Объект']}
Новость: {row['Заголовок']}
Тональность: {sentiment}
{"Эффект: " + impact + "
" if impact else ""} {"Обоснование: " + reasoning + "
" if reasoning else ""}
""", unsafe_allow_html=True) elif sentiment == "Positive": st.markdown(f"""
Объект: {row['Объект']}
Новость: {row['Заголовок']}
Тональность: {sentiment}
""", unsafe_allow_html=True) else: st.write(f"Объект: {row['Объект']}") st.write(f"Новость: {row['Заголовок']}") st.write(f"Тональность: {sentiment}") st.write("---") # Initialize sentiment analyzers finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert") roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment") finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone") def get_mapped_sentiment(result): label = result['label'].lower() if label in ["positive", "label_2", "pos", "pos_label"]: return "Positive" elif label in ["negative", "label_0", "neg", "neg_label"]: return "Negative" return "Neutral" def analyze_sentiment(text): try: finbert_result = get_mapped_sentiment( finbert(text, truncation=True, max_length=512)[0] ) roberta_result = get_mapped_sentiment( roberta(text, truncation=True, max_length=512)[0] ) finbert_tone_result = get_mapped_sentiment( finbert_tone(text, truncation=True, max_length=512)[0] ) # Count occurrences of each sentiment sentiments = [finbert_result, roberta_result, finbert_tone_result] sentiment_counts = {s: sentiments.count(s) for s in set(sentiments)} # Return sentiment if at least two models agree for sentiment, count in sentiment_counts.items(): if count >= 2: return sentiment # Default to Neutral if no agreement return "Neutral" except Exception as e: st.warning(f"Sentiment analysis error: {str(e)}") return "Neutral" def fuzzy_deduplicate(df, column, threshold=50): seen_texts = [] indices_to_keep = [] for i, text in enumerate(df[column]): if pd.isna(text): indices_to_keep.append(i) continue text = str(text) if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts): seen_texts.append(text) indices_to_keep.append(i) return df.iloc[indices_to_keep] def init_langchain_llm(model_choice): try: if model_choice == "Qwen2.5-Coder": st.info("Loading Qwen2.5-Coder model. только GPU!") return QwenSystem() elif model_choice == "Groq (llama-3.1-70b)": if 'groq_key' not in st.secrets: st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.") st.stop() return ChatOpenAI( base_url="https://api.groq.com/openai/v1", model="llama-3.1-70b-versatile", openai_api_key=st.secrets['groq_key'], temperature=0.0 ) elif model_choice == "ChatGPT-4-mini": if 'openai_key' not in st.secrets: st.error("OpenAI API key not found in secrets. Please add it with the key 'openai_key'.") st.stop() return ChatOpenAI( model="gpt-4", openai_api_key=st.secrets['openai_key'], temperature=0.0 ) elif model_choice == "Local-MT5": return FallbackLLMSystem() except Exception as e: st.error(f"Error initializing the LLM: {str(e)}") st.stop() def estimate_impact(llm, news_text, entity): template = """ Analyze the following news piece about the entity "{entity}" and estimate its monetary impact in Russian rubles for this entity in the next 6 months. If precise monetary estimate is not possible, categorize the impact as one of the following: 1. "Значительный риск убытков" 2. "Умеренный риск убытков" 3. "Незначительный риск убытков" 4. "Вероятность прибыли" 5. "Неопределенный эффект" Provide brief reasoning (maximum 100 words). News: {news} Your response should be in the following format: Impact: [Your estimate or category] Reasoning: [Your reasoning] """ prompt = PromptTemplate(template=template, input_variables=["entity", "news"]) chain = prompt | llm response = chain.invoke({"entity": entity, "news": news_text}) impact = "Неопределенный эффект" reasoning = "Не удалось получить обоснование" # Extract content from response response_text = response.content if hasattr(response, 'content') else str(response) try: if "Impact:" in response_text and "Reasoning:" in response_text: impact_part, reasoning_part = response_text.split("Reasoning:") impact = impact_part.split("Impact:")[1].strip() reasoning = reasoning_part.strip() except Exception as e: st.error(f"Error parsing LLM response: {str(e)}") return impact, reasoning def format_elapsed_time(seconds): hours, remainder = divmod(int(seconds), 3600) minutes, seconds = divmod(remainder, 60) time_parts = [] if hours > 0: time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}") if minutes > 0: time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}") if seconds > 0 or not time_parts: time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}") return " ".join(time_parts) def generate_sentiment_visualization(df): negative_df = df[df['Sentiment'] == 'Negative'] if negative_df.empty: st.warning("Не обнаружено негативных упоминаний. Отображаем общую статистику по объектам.") entity_counts = df['Объект'].value_counts() else: entity_counts = negative_df['Объект'].value_counts() if len(entity_counts) == 0: st.warning("Нет данных для визуализации.") return None fig, ax = plt.subplots(figsize=(12, max(6, len(entity_counts) * 0.5))) entity_counts.plot(kind='barh', ax=ax) ax.set_title('Количество негативных упоминаний по объектам') ax.set_xlabel('Количество упоминаний') plt.tight_layout() return fig def create_analysis_data(df): analysis_data = [] for _, row in df.iterrows(): if row['Sentiment'] == 'Negative': analysis_data.append([ row['Объект'], row['Заголовок'], 'РИСК УБЫТКА', row['Impact'], row['Reasoning'], row['Выдержки из текста'] ]) return pd.DataFrame(analysis_data, columns=[ 'Объект', 'Заголовок', 'Признак', 'Оценка влияния', 'Обоснование', 'Текст сообщения' ]) def create_output_file(df, uploaded_file, llm): wb = load_workbook("sample_file.xlsx") try: # Update 'Мониторинг' sheet with events ws = wb['Мониторинг'] row_idx = 4 for _, row in df.iterrows(): if row['Event_Type'] != 'Нет': ws.cell(row=row_idx, column=5, value=row['Объект']) # Column E ws.cell(row=row_idx, column=6, value=row['Заголовок']) # Column F ws.cell(row=row_idx, column=7, value=row['Event_Type']) # Column G ws.cell(row=row_idx, column=8, value=row['Event_Summary']) # Column H ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I row_idx += 1 # Sort entities by number of negative publications entity_stats = pd.DataFrame({ 'Объект': df['Объект'].unique(), 'Всего': df.groupby('Объект').size(), 'Негативные': df[df['Sentiment'] == 'Negative'].groupby('Объект').size().fillna(0).astype(int), 'Позитивные': df[df['Sentiment'] == 'Positive'].groupby('Объект').size().fillna(0).astype(int) }).sort_values('Негативные', ascending=False) # Calculate most negative impact for each entity entity_impacts = {} for entity in df['Объект'].unique(): entity_df = df[df['Объект'] == entity] negative_impacts = entity_df[entity_df['Sentiment'] == 'Negative']['Impact'] entity_impacts[entity] = negative_impacts.iloc[0] if len(negative_impacts) > 0 else 'Неопределенный эффект' # Update 'Сводка' sheet ws = wb['Сводка'] for idx, (entity, row) in enumerate(entity_stats.iterrows(), start=4): ws.cell(row=idx, column=5, value=entity) # Column E ws.cell(row=idx, column=6, value=row['Всего']) # Column F ws.cell(row=idx, column=7, value=row['Негативные']) # Column G ws.cell(row=idx, column=8, value=row['Позитивные']) # Column H ws.cell(row=idx, column=9, value=entity_impacts[entity]) # Column I # Update 'Значимые' sheet ws = wb['Значимые'] row_idx = 3 for _, row in df.iterrows(): if row['Sentiment'] in ['Negative', 'Positive']: ws.cell(row=row_idx, column=3, value=row['Объект']) # Column C ws.cell(row=row_idx, column=4, value='релевантно') # Column D ws.cell(row=row_idx, column=5, value=row['Sentiment']) # Column E ws.cell(row=row_idx, column=6, value=row['Impact']) # Column F ws.cell(row=row_idx, column=7, value=row['Заголовок']) # Column G ws.cell(row=row_idx, column=8, value=row['Выдержки из текста']) # Column H row_idx += 1 # Copy 'Публикации' sheet original_df = pd.read_excel(uploaded_file, sheet_name='Публикации') ws = wb['Публикации'] for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1): for c_idx, value in enumerate(row, start=1): ws.cell(row=r_idx, column=c_idx, value=value) # Update 'Анализ' sheet ws = wb['Анализ'] row_idx = 4 for _, row in df[df['Sentiment'] == 'Negative'].iterrows(): ws.cell(row=row_idx, column=5, value=row['Объект']) # Column E ws.cell(row=row_idx, column=6, value=row['Заголовок']) # Column F ws.cell(row=row_idx, column=7, value="Риск убытка") # Column G # Translate reasoning if it exists if pd.notna(row['Reasoning']): translated_reasoning = translate_reasoning_to_russian(llm, row['Reasoning']) ws.cell(row=row_idx, column=8, value=translated_reasoning) # Column H ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I row_idx += 1 # Update 'Тех.приложение' sheet tech_df = df[['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']] if 'Тех.приложение' not in wb.sheetnames: wb.create_sheet('Тех.приложение') ws = wb['Тех.приложение'] for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1): for c_idx, value in enumerate(row, start=1): ws.cell(row=r_idx, column=c_idx, value=value) except Exception as e: st.warning(f"Ошибка при создании выходного файла: {str(e)}") output = io.BytesIO() wb.save(output) output.seek(0) return output def main(): st.set_page_config(layout="wide") with st.sidebar: st.title("::: AI-анализ мониторинга новостей (v.3.59*):::") st.subheader("по материалам СКАН-ИНТЕРФАКС") model_choice = st.radio( "Выберите модель для анализа:", ["Local-MT5", "Qwen2.5-Coder", "Groq (llama-3.1-70b)", "ChatGPT-4-mini"], key="model_selector", help="Выберите модель для анализа новостей" ) uploaded_file = st.file_uploader( "Выбирайте Excel-файл", type="xlsx", key="file_uploader" ) st.markdown( """ Использованы технологии: - Анализ естественного языка с помощью предтренированных нейросетей **BERT** - Дополнительная обработка при помощи больших языковых моделей (**LLM**) - Фреймворк **LangChain** для оркестрации """, unsafe_allow_html=True ) # Main content area st.title("Анализ мониторинга новостей") # Initialize session state if 'processed_df' not in st.session_state: st.session_state.processed_df = None # Create display areas col1, col2 = st.columns([2, 1]) with col1: # Area for real-time updates st.subheader("Что найдено, сообщаю:") st.markdown(""" """, unsafe_allow_html=True) with col2: # Area for statistics st.subheader("Статистика") if st.session_state.processed_df is not None: st.metric("Всего статей", len(st.session_state.processed_df)) st.metric("Из них негативных", len(st.session_state.processed_df[ st.session_state.processed_df['Sentiment'] == 'Negative' ]) ) st.metric("Событий обнаружено", len(st.session_state.processed_df[ st.session_state.processed_df['Event_Type'] != 'Нет' ]) ) if uploaded_file is not None and st.session_state.processed_df is None: start_time = time.time() try: st.session_state.processed_df = process_file( uploaded_file, model_choice, translation_method='auto' ) if st.session_state.processed_df is not None: end_time = time.time() elapsed_time = format_elapsed_time(end_time - start_time) # Show results st.subheader("Итого по результатам") # Display statistics stats_cols = st.columns(4) with stats_cols[0]: st.metric("Всего обработано", len(st.session_state.processed_df)) with stats_cols[1]: st.metric("Негативных", len(st.session_state.processed_df[ st.session_state.processed_df['Sentiment'] == 'Negative' ]) ) with stats_cols[2]: st.metric("Событий обнаружено", len(st.session_state.processed_df[ st.session_state.processed_df['Event_Type'] != 'Нет' ]) ) with stats_cols[3]: st.metric("Время обработки составило", elapsed_time) # Show data previews with st.expander("📊 Предпросмотр данных", expanded=True): preview_cols = ['Объект', 'Заголовок', 'Sentiment', 'Event_Type'] st.dataframe( st.session_state.processed_df[preview_cols], use_container_width=True ) # Create downloadable report output = create_output_file( st.session_state.processed_df, uploaded_file, init_langchain_llm(model_choice) ) st.download_button( label="📥 Полный отчет - загрузить", data=output, file_name="результаты_анализа.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", key='download_button' ) except Exception as e: st.error(f"Ошибочка в обработке файла: {str(e)}") st.session_state.processed_df = None if __name__ == "__main__": main()