import time import gradio as gr import pandas as pd import openvino_genai as ov_genai from huggingface_hub import snapshot_download from threading import Lock, Event import os import numpy as np import requests from PIL import Image from io import BytesIO import cpuinfo import openvino as ov import librosa from googleapiclient.discovery import build import gc from PyPDF2 import PdfReader from docx import Document import textwrap from queue import Queue, Empty from concurrent.futures import ThreadPoolExecutor from typing import Generator import warnings from transformers import pipeline # Added for Whisper # Suppress specific OpenVINO deprecation warning warnings.filterwarnings("ignore", category=DeprecationWarning, module="openvino.runtime") # Google API configuration GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4" GOOGLE_CSE_ID = "3027bedf3c88a4efb" DEFAULT_MAX_TOKENS = 100 DEFAULT_NUM_IMAGES = 1 MAX_HISTORY_TURNS = 3 MAX_TOKENS_LIMIT = 1000 class UnifiedAISystem: def __init__(self): self.pipe_lock = Lock() self.current_df = None self.mistral_pipe = None self.internvl_pipe = None self.whisper_pipe = None self.current_document_text = None self.generation_executor = ThreadPoolExecutor(max_workers=3) self.initialize_models() def initialize_models(self): """Initialize all required models""" # Download models if not exists model_paths = { "mistral-ov": "OpenVINO/mistral-7b-instruct-v0.1-int8-ov", "internvl-ov": "OpenVINO/InternVL2-1B-int8-ov" # Removed distil-whisper download since we're using transformers version } for local_dir, repo_id in model_paths.items(): if not os.path.exists(local_dir): snapshot_download(repo_id=repo_id, local_dir=local_dir) # CPU-specific configuration cpu_features = cpuinfo.get_cpu_info()['flags'] config_properties = {} if 'avx512' in cpu_features: config_properties["ENFORCE_BF16"] = "YES" elif 'avx2' in cpu_features: config_properties["INFERENCE_PRECISION_HINT"] = "f32" # Initialize Mistral model with updated configuration self.mistral_pipe = ov_genai.LLMPipeline( "mistral-ov", device="CPU", PERFORMANCE_HINT="THROUGHPUT", **config_properties ) def load_data(self, file_path): """Load student data from file""" try: file_ext = os.path.splitext(file_path)[1].lower() if file_ext == '.csv': self.current_df = pd.read_csv(file_path) elif file_ext in ['.xlsx', '.xls']: self.current_df = pd.read_excel(file_path) else: return False, "❌ Unsupported file format. Please upload a .csv or .xlsx file." return True, f"✅ Loaded {len(self.current_df)} records from {os.path.basename(file_path)}" except Exception as e: return False, f"❌ Error loading file: {str(e)}" def extract_text_from_document(self, file_path): """Extract text from PDF or DOCX documents""" text = "" try: file_ext = os.path.splitext(file_path)[1].lower() if file_ext == '.pdf': with open(file_path, 'rb') as file: pdf_reader = PdfReader(file) for page in pdf_reader.pages: text += page.extract_text() + "\n" elif file_ext == '.docx': doc = Document(file_path) for para in doc.paragraphs: text += para.text + "\n" else: return False, "❌ Unsupported document format. Please upload PDF or DOCX." # Clean and format text text = text.replace('\x0c', '') # Remove form feed characters text = textwrap.dedent(text) # Remove common leading whitespace self.current_document_text = text return True, f"✅ Extracted text from {os.path.basename(file_path)}" except Exception as e: return False, f"❌ Error processing document: {str(e)}" def generate_text_stream(self, prompt: str, max_tokens: int) -> Generator[str, None, None]: """Unified text generation with queued token streaming""" start_time = time.time() response_queue = Queue() completion_event = Event() error = [None] # Use list to capture exception from thread optimized_config = ov_genai.GenerationConfig( max_new_tokens=max_tokens, temperature=0.3, top_p=0.9, streaming=True, streaming_interval=5 # Batch tokens in groups of 5 ) def callback(tokens): # Accepts multiple tokens response_queue.put("".join(tokens)) return ov_genai.StreamingStatus.RUNNING def generate(): try: with self.pipe_lock: self.mistral_pipe.generate(prompt, optimized_config, callback) except Exception as e: error[0] = str(e) finally: completion_event.set() # Submit generation task to executor self.generation_executor.submit(generate) accumulated = [] token_count = 0 last_gc = time.time() while not completion_event.is_set() or not response_queue.empty(): if error[0]: yield f"❌ Error: {error[0]}" print(f"Stream generation time: {time.time() - start_time:.2f} seconds") return try: token_batch = response_queue.get(timeout=0.1) accumulated.append(token_batch) token_count += len(token_batch) yield "".join(accumulated) # Periodic garbage collection if time.time() - last_gc > 2.0: gc.collect() last_gc = time.time() except Empty: continue print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds " f"({token_count/(time.time() - start_time):.2f} tokens/sec)") yield "".join(accumulated) def analyze_student_data(self, query, max_tokens=500): """Analyze student data using AI with streaming""" if not query or not query.strip(): yield "⚠️ Please enter a valid question" return if self.current_df is None: yield "⚠️ Please upload and load a student data file first" return data_summary = self._prepare_data_summary(self.current_df) prompt = f"""You are an expert education analyst. Analyze the following student performance data: {data_summary} Question: {query} Please include: 1. Direct answer to the question 2. Relevant statistics 3. Key insights 4. Actionable recommendations Format the output with clear headings""" # Use unified streaming generator yield from self.generate_text_stream(prompt, max_tokens) def _prepare_data_summary(self, df): """Summarize the uploaded data""" summary = f"Student performance data with {len(df)} rows and {len(df.columns)} columns.\n" summary += "Columns: " + ", ".join(df.columns) + "\n" summary += "First 3 rows:\n" + df.head(3).to_string(index=False) return summary def analyze_image(self, image, url, prompt): """Analyze image with InternVL model (synchronous, no streaming)""" try: if image is not None: image_source = image elif url and url.startswith(("http://", "https://")): response = requests.get(url) image_source = Image.open(BytesIO(response.content)).convert("RGB") else: return "⚠️ Please upload an image or enter a valid URL" # Convert to OpenVINO tensor image_data = np.array(image_source.getdata()).reshape( 1, image_source.size[1], image_source.size[0], 3 ).astype(np.byte) image_tensor = ov.Tensor(image_data) # Lazy initialize InternVL if self.internvl_pipe is None: self.internvl_pipe = ov_genai.VLMPipeline("internvl-ov", device="CPU") with self.pipe_lock: self.internvl_pipe.start_chat() output = self.internvl_pipe.generate(prompt, image=image_tensor, max_new_tokens=100) self.internvl_pipe.finish_chat() # Ensure output is string return str(output) except Exception as e: return f"❌ Error: {str(e)}" def process_audio(self, data, sr): """Process audio data for speech recognition""" try: # Convert to mono if data.ndim > 1: data = np.mean(data, axis=1) # Simple mono conversion else: data = data # Convert to float32 and normalize data = data.astype(np.float32) max_val = np.max(np.abs(data)) + 1e-7 data /= max_val # Simple noise reduction data = np.clip(data, -0.5, 0.5) # Trim silence energy = np.abs(data) threshold = np.percentile(energy, 25) # Simple threshold mask = energy > threshold indices = np.where(mask)[0] if len(indices) > 0: start = max(0, indices[0] - 1000) end = min(len(data), indices[-1] + 1000) data = data[start:end] # Resample if needed using simpler method if sr != 16000: # Calculate new length new_length = int(len(data) * 16000 / sr) # Linear interpolation for resampling data = np.interp( np.linspace(0, len(data)-1, new_length), np.arange(len(data)), data ) sr = 16000 return data except Exception as e: print(f"Audio processing error: {e}") return np.array([], dtype=np.float32) def transcribe(self, audio): """Transcribe audio using OpenAI Whisper-small model""" if audio is None: return "" sr, data = audio # Skip if audio is too short (less than 0.5 seconds) if len(data)/sr < 0.5: return "" try: processed = self.process_audio(data, sr) # Skip if audio is still too short after processing if len(processed) < 8000: # 0.5 seconds at 16kHz return "" # Lazy initialize Whisper - USING TRANSFORMERS PIPELINE if self.whisper_pipe is None: self.whisper_pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-small", device="cpu" # Use CPU for consistency ) # Use transformers pipeline for transcription result = self.whisper_pipe(processed, return_timestamps=False) return result["text"] except Exception as e: print(f"Transcription error: {e}") return "❌ Transcription failed - please try again" def generate_lesson_plan(self, topic, duration, additional_instructions="", max_tokens=1200): """Generate a lesson plan based on document content""" if not topic: yield "⚠️ Please enter a lesson topic" return if not self.current_document_text: yield "⚠️ Please upload and process a document first" return prompt = f"""As an expert educator, create a focused lesson plan using the provided content. **Core Requirements:** 1. TOPIC: {topic} 2. TOTAL DURATION: {duration} periods 3. ADDITIONAL INSTRUCTIONS: {additional_instructions or 'None'} **Content Summary:** {self.current_document_text[:2500]}... [truncated] **Output Structure:** 1. PERIOD ALLOCATION (Break topic into {duration} logical segments): - Period 1: [Subtopic 1] - Period 2: [Subtopic 2] ... 2. LEARNING OBJECTIVES (Max 3 bullet points) 3. TEACHING ACTIVITIES (One engaging method per period) 4. RESOURCES (Key materials from document) 5. ASSESSMENT (Simple checks for understanding) 6. PAGE REFERENCES (Specific source pages) **Key Rules:** - Strictly divide content into exactly {duration} periods - Prioritize document content over creativity - Keep objectives measurable - Use only document resources - Make page references specific""" # Use unified streaming generator yield from self.generate_text_stream(prompt, max_tokens) def fetch_images(self, query: str, num: int = DEFAULT_NUM_IMAGES) -> list: """Fetch unique images by requesting different result pages""" if num <= 0: return [] try: service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY) image_links = [] seen_urls = set() # To track unique URLs # Start from different positions to get unique images for start_index in range(1, num * 2, 2): if len(image_links) >= num: break res = service.cse().list( q=query, cx=GOOGLE_CSE_ID, searchType="image", num=1, start=start_index ).execute() if "items" in res and res["items"]: item = res["items"][0] # Skip duplicates if item["link"] not in seen_urls: image_links.append(item["link"]) seen_urls.add(item["link"]) return image_links[:num] except Exception as e: print(f"Error in image fetching: {e}") return [] # Initialize global object ai_system = UnifiedAISystem() # CSS styles with improved output box css = """ .gradio-container { background-color: #121212; color: #fff; } .user-msg, .bot-msg { padding: 12px 16px; border-radius: 18px; margin: 8px 0; line-height: 1.5; border: none; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .user-msg { background: linear-gradient(135deg, #4a5568, #2d3748); color: white; margin-left: 20%; border-bottom-right-radius: 5px; border: none; } .bot-msg { background: linear-gradient(135deg, #2d3748, #1a202c); color: white; margin-right: 20%; border-bottom-left-radius: 5px; border: none; } /* Remove top border from chat messages */ .user-msg, .bot-msg { border-top: none !important; } /* Remove borders from chat container */ .chatbot > div { border: none !important; } .chatbot .message { border: none !important; } /* Improve scrollbar */ .chatbot::-webkit-scrollbar { width: 8px; } .chatbot::-webkit-scrollbar-track { background: #2a2a2a; border-radius: 4px; } .chatbot::-webkit-scrollbar-thumb { background: #4a5568; border-radius: 4px; } .chatbot::-webkit-scrollbar-thumb:hover { background: #5a6578; } /* Rest of the CSS remains the same */ .gradio-container { background-color: #121212; color: #fff; } .upload-box { background-color: #333; border-radius: 8px; padding: 16px; margin-bottom: 16px; } #question-input { background-color: #333; color: #fff; border-radius: 8px; padding: 12px; border: 1px solid #555; } .mode-checkbox { background-color: #333; color: #fff; border: 1px solid #555; border-radius: 8px; padding: 10px; margin: 5px; } .slider-container { margin-top: 20px; padding: 15px; border-radius: 10px; background-color: #2a2a2a; } .system-info { background-color: #7B9BDB; padding: 15px; border-radius: 8px; margin: 15px 0; border-left: 4px solid #1890ff; } .chat-image { cursor: pointer; transition: transform 0.2s; max-height: 100px; margin: 4px; border-radius: 8px; box-shadow: 0 2px 4px rgba(0,0,0,0.1); } .chat-image:hover { transform: scale(1.05); box-shadow: 0 4px 8px rgba(0,0,0,0.2); } .modal { position: fixed; top: 0; left: 0; width: 100%; height: 100%; background: rgba(0,0,0,0.8); display: none; z-index: 1000; cursor: zoom-out; } .modal-content { position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); max-width: 90%; max-height: 90%; background: white; padding: 10px; border-radius: 12px; } .modal-img { width: auto; height: auto; max-width: 100%; max-height: 100%; border-radius: 8px; } .typing-indicator { display: inline-block; position: relative; width: 40px; height: 20px; } .typing-dot { display: inline-block; width: 6px; height: 6px; border-radius: 50%; background-color: #fff; position: absolute; animation: typing 1.4s infinite ease-in-out; } .typing-dot:nth-child(1) { left: 0; animation-delay: 0s; } .typing-dot:nth-child(2) { left: 12px; animation-delay: 0.2s; } .typing-dot:nth-child(3) { left: 24px; animation-delay: 0.4s; } @keyframes typing { 0%, 60%, 100% { transform: translateY(0); } 30% { transform: translateY(-5px); } } .lesson-plan { background: linear-gradient(135deg, #1a202c, #2d3748); padding: 15px; border-radius: 12px; margin: 10px 0; border-left: 4px solid #4a9df0; } .lesson-section { margin-bottom: 15px; padding-bottom: 10px; border-bottom: 1px solid #4a5568; } .lesson-title { font-size: 1.2em; font-weight: bold; color: #4a9df0; margin-bottom: 8px; } .page-ref { background-color: #4a5568; padding: 3px 8px; border-radius: 4px; font-size: 0.9em; display: inline-block; margin: 3px; } """ # Create Gradio interface with gr.Blocks(css=css, title="Unified EDU Assistant") as demo: gr.Markdown("# 🤖 Unified EDU Assistant by Phanindra Reddy K") # System info banner gr.HTML("""