File size: 21,666 Bytes
bbde278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
from huggingface_hub import snapshot_download
import gradio as gr
import openvino_genai
import librosa
import numpy as np
from threading import Lock, Event
from scipy.ndimage import uniform_filter1d
from queue import Queue, Empty
from googleapiclient.discovery import build
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
import cpuinfo
import gc
import os
import requests
from PIL import Image
from io import BytesIO
import openvino as ov
import threading

# Set CPU affinity for optimization
os.environ["GOMP_CPU_AFFINITY"] = "0-7"  # Use first 8 CPU cores
os.environ["OMP_NUM_THREADS"] = "8"

# Configuration constants
GOOGLE_API_KEY = "AIzaSyAo-1iW5MEZbc53DlEldtnUnDaYuTHUDH4"
GOOGLE_CSE_ID = "3027bedf3c88a4efb"
DEFAULT_MAX_TOKENS = 100
DEFAULT_NUM_IMAGES = 1
MAX_HISTORY_TURNS = 2
MAX_TOKENS_LIMIT = 1000

# Download models
start_time = time.time()
snapshot_download(repo_id="OpenVINO/mistral-7b-instruct-v0.1-int8-ov", local_dir="mistral-ov")
snapshot_download(repo_id="OpenVINO/whisper-tiny-fp16-ov", local_dir="whisper-ov-model")
snapshot_download(repo_id="OpenVINO/InternVL2-1B-int8-ov", local_dir="internvl-ov")  # Added for image analysis
print(f"Model download time: {time.time() - start_time:.2f} seconds")

# CPU-specific configuration
cpu_features = cpuinfo.get_cpu_info()['flags']
config_options = {}
if 'avx512' in cpu_features:
    config_options["ENFORCE_BF16"] = "YES"
    print("Using AVX512 optimizations")
elif 'avx2' in cpu_features:
    config_options["INFERENCE_PRECISION_HINT"] = "f32"
    print("Using AVX2 optimizations")

# Initialize models with performance flags
start_time = time.time()
mistral_pipe = openvino_genai.LLMPipeline(
    "mistral-ov",
    device="CPU",
    config={
        "PERFORMANCE_HINT": "THROUGHPUT",
        **config_options
    }
)

whisper_pipe = openvino_genai.WhisperPipeline(
    "whisper-ov-model",
    device="CPU"
)
pipe_lock = Lock()
print(f"Model initialization time: {time.time() - start_time:.2f} seconds")

# Initialize InternVL pipeline for image analysis (lazy loading)
internvl_pipe = None
internvl_lock = Lock()

def get_internvl_pipeline():
    global internvl_pipe
    with internvl_lock:
        if internvl_pipe is None:
            print("Initializing InternVL pipeline...")
            start_time = time.time()
            internvl_pipe = openvino_genai.VLMPipeline("internvl-ov", device="CPU")
            print(f"InternVL pipeline initialization time: {time.time() - start_time:.2f} seconds")
    return internvl_pipe

# Warm up models
print("Warming up models...")
start_time = time.time()
with pipe_lock:
    mistral_pipe.generate("Warmup", openvino_genai.GenerationConfig(max_new_tokens=10))
    whisper_pipe.generate(np.zeros(16000, dtype=np.float32))
print(f"Model warmup time: {time.time() - start_time:.2f} seconds")

# Thread pools
generation_executor = ThreadPoolExecutor(max_workers=4)  # Increased workers
image_executor = ThreadPoolExecutor(max_workers=8)

def fetch_images(query: str, num: int = DEFAULT_NUM_IMAGES) -> list:
    """Fetch unique images by requesting different result pages"""
    start_time = time.time()

    if num <= 0:
        return []

    try:
        service = build("customsearch", "v1", developerKey=GOOGLE_API_KEY)
        image_links = []
        seen_urls = set()  # To track unique URLs

        # Start from different positions to get unique images
        for start_index in range(1, num * 2, 2):  # Step by 2 to get different pages
            if len(image_links) >= num:
                break

            res = service.cse().list(
                q=query,
                cx=GOOGLE_CSE_ID,
                searchType="image",
                num=1,  # Get one result per request
                start=start_index  # Start at different positions
            ).execute()

            if "items" in res and res["items"]:
                item = res["items"][0]
                # Skip duplicates
                if item["link"] not in seen_urls:
                    image_links.append(item["link"])
                    seen_urls.add(item["link"])

        print(f"Unique image fetch time: {time.time() - start_time:.2f} seconds")
        return image_links[:num]  # Return only the requested number
    except Exception as e:
        print(f"Error in image fetching: {e}")
        return []

def process_audio(data, sr):
    start_time = time.time()
    data = librosa.to_mono(data.T) if data.ndim > 1 else data
    data = data.astype(np.float32)
    data /= np.max(np.abs(data))
    rms = librosa.feature.rms(y=data, frame_length=2048, hop_length=512)[0]
    smoothed_rms = uniform_filter1d(rms, size=5)
    speech_frames = np.where(smoothed_rms > 0.025)[0]
    if not speech_frames.size:
        print(f"Audio processing time: {time.time() - start_time:.2f} seconds")
        return None
    start = max(0, int(speech_frames[0] * 512 - 0.1 * sr))
    end = min(len(data), int((speech_frames[-1] + 1) * 512 + 0.1 * sr))
    print(f"Audio processing time: {time.time() - start_time:.2f} seconds")
    return data[start:end]

def transcribe(audio):
    start_time = time.time()
    if audio is None:
        print(f"Transcription time: {time.time() - start_time:.2f} seconds")
        return ""
    sr, data = audio
    processed = process_audio(data, sr)
    if processed is None or len(processed) < 1600:
        print(f"Transcription time: {time.time() - start_time:.2f} seconds")
        return ""
    if sr != 16000:
        processed = librosa.resample(processed, orig_sr=sr, target_sr=16000)
    result = whisper_pipe.generate(processed)
    print(f"Transcription time: {time.time() - start_time:.2f} seconds")
    return result

def stream_answer(message: str, max_tokens: int, include_images: bool) -> str:
    start_time = time.time()
    response_queue = Queue()
    completion_event = Event()
    error = [None]

    optimized_config = openvino_genai.GenerationConfig(
        max_new_tokens=max_tokens,
        num_beams=1,
        do_sample=False,
        temperature=1.0,
        top_p=0.9,
        top_k=30,
        streaming=True,
        streaming_interval=5  # Batch tokens in groups of 5
    )

    def callback(tokens):  # Now accepts multiple tokens
        response_queue.put("".join(tokens))
        return openvino_genai.StreamingStatus.RUNNING

    def generate():
        try:
            with pipe_lock:
                mistral_pipe.generate(message, optimized_config, callback)
        except Exception as e:
            error[0] = str(e)
        finally:
            completion_event.set()

    generation_executor.submit(generate)

    accumulated = []
    token_count = 0
    last_gc = time.time()

    while not completion_event.is_set() or not response_queue.empty():
        if error[0]:
            yield f"Error: {error[0]}"
            print(f"Stream answer time: {time.time() - start_time:.2f} seconds")
            return

        try:
            token_batch = response_queue.get_nowait()
            accumulated.append(token_batch)
            token_count += len(token_batch)

            # Periodic garbage collection
            if time.time() - last_gc > 2.0:  # Every 2 seconds
                gc.collect()
                last_gc = time.time()

            yield "".join(accumulated)
        except Empty:
            continue

    print(f"Generated {token_count} tokens in {time.time() - start_time:.2f} seconds "
          f"({token_count/(time.time() - start_time):.2f} tokens/sec)")
    yield "".join(accumulated)

def run_chat(message: str, history: list, include_images: bool, max_tokens: int, num_images: int):
    start_time = time.time()
    final_text = ""

    # Create a placeholder for the streaming response
    history.append((message, "", []))
    rendered_history = render_history(history)
    yield rendered_history, gr.update(value="", interactive=False)

    # Stream tokens and update chatbot in real-time
    for output in stream_answer(message, max_tokens, include_images):
        final_text = output
        # Update only the last response in history
        updated_history = history[:-1] + [(message, final_text, [])]
        rendered_history = render_history(updated_history)
        yield rendered_history, gr.update(value="", interactive=False)

    images = []
    if include_images:
        images = fetch_images(message, num_images)

    # Update history with final response and images
    history[-1] = (message, final_text, images)
    if len(history) > MAX_HISTORY_TURNS:
        history = history[-MAX_HISTORY_TURNS:]

    rendered_history = render_history(history)
    print(f"Total chat time: {time.time() - start_time:.2f} seconds")
    yield rendered_history, gr.update(value="", interactive=True)

def render_history(history):
    start_time = time.time()
    rendered = []
    for user_msg, bot_msg, image_links in history:
        text = bot_msg
        if image_links:
            images_html = "".join(
                f"<img src='{url}' class='chat-image' onclick='showImage(\"{url}\")' />"
                for url in image_links
            )
            text += f"<br><br><b>๐Ÿ“ธ Related Visuals:</b><br><div style='display: flex; flex-wrap: wrap;'>{images_html}</div>"
        rendered.append((user_msg, text))

    return rendered

# ===== IMAGE ANALYSIS FUNCTIONS =====
def load_image(image_source):
    """Load image from various sources: file path, URL, or PIL Image"""
    if isinstance(image_source, str):
        if image_source.startswith(("http://", "https://")):
            # Load from URL
            response = requests.get(image_source)
            image = Image.open(BytesIO(response.content)).convert("RGB")
        else:
            # Load from file path
            image = Image.open(image_source).convert("RGB")
    elif isinstance(image_source, Image.Image):
        # Already a PIL image
        image = image_source
    else:
        raise ValueError("Unsupported image input type")

    # Convert to OpenVINO tensor
    image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.byte)
    return ov.Tensor(image_data)

def analyze_image(image, url, prompt):
    try:
        # Determine image source (priority: uploaded image > URL)
        image_source = image if image is not None else url

        if not image_source:
            return "โš ๏ธ Please upload an image or enter an image URL"

        # Convert to OpenVINO tensor
        image_tensor = load_image(image_source)

        # Get pipeline (lazy initialization)
        pipe = get_internvl_pipeline()

        # Generate response with thread safety
        with internvl_lock:
            pipe.start_chat()
            output = pipe.generate(prompt, image=image_tensor, max_new_tokens=100)
            pipe.finish_chat()

        return output

    except Exception as e:
        return f"โŒ Error: {str(e)}"

# ===== GRADIO INTERFACE =====
css = """
    .processing {
        animation: pulse 1.5s infinite;
        color: #4a5568;
        padding: 10px;
        border-radius: 5px;
        text-align: center;
        margin: 10px 0;
    }
    @keyframes pulse {
        0%, 100% { opacity: 1; }
        50% { opacity: 0.5; }
    }
    .chat-image {
        cursor: pointer;
        transition: transform 0.2s;
        max-height: 100px;
        margin: 4px;
        border-radius: 8px;
        box-shadow: 0 2px 4px rgba(0,0,0,0.1);
    }
    .chat-image:hover {
        transform: scale(1.05);
        box-shadow: 0 4px 8px rgba(0,0,0,0.2);
    }
    .modal {
        position: fixed;
        top: 0;
        left: 0;
        width: 100%;
        height: 100%;
        background: rgba(0,0,0,0.8);
        display: none;
        z-index: 1000;
        cursor: zoom-out;
    }
    .modal-content {
        position: absolute;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
        max-width: 90%;
        max-height: 90%;
        background: white;
        padding: 10px;
        border-radius: 12px;
    }
    .modal-img {
        width: auto;
        height: auto;
        max-width: 100%;
        max-height: 100%;
        border-radius: 8px;
    }
    .chat-container {
        border: 1px solid #e5e7eb;
        border-radius: 12px;
        padding: 20px;
        margin-bottom: 20px;
    }
    .slider-container {
        margin-top: 20px;
        padding: 15px;
        border-radius: 10px;
        background-color: #f8f9fa;
    }
    .slider-label {
        font-weight: bold;
        margin-bottom: 5px;
    }
    .system-info {
        background-color: #7B9BDB;
        padding: 15px;
        border-radius: 8px;
        margin: 15px 0;
        border-left: 4px solid #1890ff;
    }
    .typing-indicator {
        display: inline-block;
        position: relative;
        width: 40px;
        height: 20px;
    }
    .typing-dot {
        display: inline-block;
        width: 6px;
        height: 6px;
        border-radius: 50%;
        background-color: #4a5568;
        position: absolute;
        animation: typing 1.4s infinite ease-in-out;
    }
    .typing-dot:nth-child(1) {
        left: 0;
        animation-delay: 0s;
    }
    .typing-dot:nth-child(2) {
        left: 12px;
        animation-delay: 0.2s;
    }
    .typing-dot:nth-child(3) {
        left: 24px;
        animation-delay: 0.4s;
    }
    @keyframes typing {
        0%, 60%, 100% { transform: translateY(0); }
        30% { transform: translateY(-5px); }
    }
    .tab-container {
        border-radius: 12px;
        padding: 20px;
        background:#3fc9f8;
        box-shadow: 0 4px 6px rgba(0,0,0,0.05);
        margin-bottom: 20px;
    }
    .tab-header {
        font-size: 24px;
        margin-bottom: 20px;
        padding-bottom: 10px;
        border-bottom: 2px solid #e5e7eb;
    }
"""

with gr.Blocks(css=css, title="EDU Chat by Phanindra Reddy K") as demo:
    gr.Markdown("# ๐Ÿค– EDU CHAT BY PHANINDRA REDDY K")

    # System info banner
    gr.HTML("""
    <div class="system-info">
        <strong>Multi-Modal AI Assistant</strong>
        <ul>
            <li>Text & Voice Chat with Mistral-7B</li>
            <li>Image Understanding with InternVL</li>
            <li>Optimized for High-RAM Systems</li>
        </ul>
    </div>
    """)

    modal_html = """
    <div class="modal" id="imageModal" onclick="this.style.display='none'">
        <div class="modal-content">
            <img class="modal-img" id="expandedImg">
        </div>
    </div>
    <script>
    function showImage(url) {
        document.getElementById('expandedImg').src = url;
        document.getElementById('imageModal').style.display = 'block';
    }
    </script>
    """
    gr.HTML(modal_html)

    # Create tabs for different functionalities
    with gr.Tabs():
        # ===== MAIN CHAT TAB =====
        with gr.Tab("๐Ÿ’ฌ Chat Assistant", id="chat_tab"):
            state = gr.State([])

            with gr.Column(scale=2, elem_classes="chat-container"):
                chatbot = gr.Chatbot(label="Conversation", height=500, bubble_full_width=False)

            with gr.Column(scale=1):
                gr.Markdown("### ๐Ÿ’ฌ Ask Your Question")

                with gr.Row():
                    user_input = gr.Textbox(
                        placeholder="Type your question here...",
                        label="",
                        container=False,
                        elem_id="question-input"
                    )
                    include_images = gr.Checkbox(
                        label="Include Visuals",
                        value=True,
                        container=False,
                        elem_id="image-checkbox"
                    )

                # Add the sliders container
                with gr.Column(elem_classes="slider-container"):
                    gr.Markdown("### โš™๏ธ Generation Settings")

                    with gr.Row():
                        max_tokens = gr.Slider(
                            minimum=10,
                            maximum=MAX_TOKENS_LIMIT,  # Increased to 1000
                            value=DEFAULT_MAX_TOKENS,
                            step=10,
                            label="Response Length (Tokens)",
                            info=f"Max: {MAX_TOKENS_LIMIT} tokens (for detailed explanations)",
                            elem_classes="slider-label"
                        )

                    # Conditionally visible image slider row
                    with gr.Row(visible=True) as image_slider_row:
                        num_images = gr.Slider(
                            minimum=0,
                            maximum=5,
                            value=DEFAULT_NUM_IMAGES,
                            step=1,
                            label="Number of Images",
                            info="Set to 0 to disable images",
                            elem_classes="slider-label"
                        )

                with gr.Row():
                    submit_btn = gr.Button("Send Text", variant="primary")
                    mic_btn = gr.Button("Transcribe Voice", variant="secondary")
                    mic = gr.Audio(
                        sources=["microphone"],
                        type="numpy",
                        label="Voice Input",
                        show_label=False,
                        elem_id="voice-input"
                    )

                processing = gr.HTML("""
                    <div id="processing" style="display: none;">
                        <div class="processing">๐Ÿ”ฎ Processing your request...</div>
                    </div>
                """)

            # Toggle image slider visibility based on checkbox
            def toggle_image_slider(include_visuals):
                return gr.update(visible=include_visuals)

            include_images.change(
                fn=toggle_image_slider,
                inputs=include_images,
                outputs=image_slider_row
            )

            def toggle_processing():
                return gr.update(visible=True), gr.update(interactive=False)

            def hide_processing():
                return gr.update(visible=False), gr.update(interactive=True)

            # Update the submit_btn click handler to include streaming
            submit_btn.click(
                fn=toggle_processing,
                outputs=[processing, submit_btn]
            ).then(
                fn=lambda: (gr.update(visible=True), gr.update(interactive=False)),
                outputs=[processing, submit_btn]
            ).then(
                fn=run_chat,
                inputs=[user_input, state, include_images, max_tokens, num_images],
                outputs=[chatbot, user_input]
            ).then(
                fn=lambda: (gr.update(visible=False), gr.update(interactive=True)),
                outputs=[processing, submit_btn]
            )

            # Voice transcription
            mic_btn.click(
                fn=toggle_processing,
                outputs=[processing, mic_btn]
            ).then(
                fn=transcribe,
                inputs=mic,
                outputs=user_input
            ).then(
                fn=hide_processing,
                outputs=[processing, mic_btn]
            )

        # ===== IMAGE ANALYSIS TAB =====
        with gr.Tab("๐Ÿ–ผ๏ธ Image Analysis", id="image_tab"):
            with gr.Column(elem_classes="tab-container"):
                gr.Markdown("## ๐Ÿ–ผ๏ธ Image Understanding with InternVL")
                gr.Markdown("Upload an image or enter a URL, then ask questions about it")

                with gr.Row():
                    with gr.Column():
                        # Image upload
                        image_upload = gr.Image(type="pil", label="Upload Image")

                        # URL input
                        url_input = gr.Textbox(
                            label="OR Enter Image URL",
                            placeholder="https://example.com/image.jpg",
                            info="Enter a direct image URL"
                        )

                        # Preview image
                        preview = gr.Image(label="Preview", interactive=False)

                        # Update preview when inputs change
                        def update_preview(img, url):
                            if img is not None:
                                return img
                            elif url and url.startswith(("http://", "https://")):
                                return url
                            return None

                        image_upload.change(update_preview, [image_upload, url_input], preview)
                        url_input.change(update_preview, [image_upload, url_input], preview)

                    with gr.Column():
                        # Question input
                        prompt = gr.Textbox(
                            label="Question",
                            placeholder="What is unusual in this image?",
                            info="Ask anything about the image"
                        )

                        # Submit button
                        img_submit_btn = gr.Button("Ask Question", variant="primary")

                        # Output
                        img_output = gr.Textbox(label="Model Response", interactive=False)

                # Submit action
                img_submit_btn.click(
                    fn=analyze_image,
                    inputs=[image_upload, url_input, prompt],
                    outputs=img_output
                )

if __name__ == "__main__":
    demo.launch(share=True, debug=True)