Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import json | |
| import copy | |
| import math | |
| from collections import OrderedDict | |
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from utils.tools import get_mask_from_lengths, pad | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| class VarianceAdaptor(nn.Module): | |
| """Variance Adaptor""" | |
| def __init__(self, preprocess_config, model_config): | |
| super(VarianceAdaptor, self).__init__() | |
| self.duration_predictor = VariancePredictor(model_config) | |
| self.length_regulator = LengthRegulator() | |
| self.pitch_predictor = VariancePredictor(model_config) | |
| self.energy_predictor = VariancePredictor(model_config) | |
| self.pitch_feature_level = preprocess_config["preprocessing"]["pitch"][ | |
| "feature" | |
| ] | |
| self.energy_feature_level = preprocess_config["preprocessing"]["energy"][ | |
| "feature" | |
| ] | |
| assert self.pitch_feature_level in ["phoneme_level", "frame_level"] | |
| assert self.energy_feature_level in ["phoneme_level", "frame_level"] | |
| pitch_quantization = model_config["variance_embedding"]["pitch_quantization"] | |
| energy_quantization = model_config["variance_embedding"]["energy_quantization"] | |
| n_bins = model_config["variance_embedding"]["n_bins"] | |
| assert pitch_quantization in ["linear", "log"] | |
| assert energy_quantization in ["linear", "log"] | |
| with open( | |
| os.path.join(preprocess_config["path"]["preprocessed_path"], "stats.json") | |
| ) as f: | |
| stats = json.load(f) | |
| pitch_min, pitch_max = stats["pitch"][:2] | |
| energy_min, energy_max = stats["energy"][:2] | |
| if pitch_quantization == "log": | |
| self.pitch_bins = nn.Parameter( | |
| torch.exp( | |
| torch.linspace(np.log(pitch_min), np.log(pitch_max), n_bins - 1) | |
| ), | |
| requires_grad=False, | |
| ) | |
| else: | |
| self.pitch_bins = nn.Parameter( | |
| torch.linspace(pitch_min, pitch_max, n_bins - 1), | |
| requires_grad=False, | |
| ) | |
| if energy_quantization == "log": | |
| self.energy_bins = nn.Parameter( | |
| torch.exp( | |
| torch.linspace(np.log(energy_min), np.log(energy_max), n_bins - 1) | |
| ), | |
| requires_grad=False, | |
| ) | |
| else: | |
| self.energy_bins = nn.Parameter( | |
| torch.linspace(energy_min, energy_max, n_bins - 1), | |
| requires_grad=False, | |
| ) | |
| self.pitch_embedding = nn.Embedding( | |
| n_bins, model_config["transformer"]["encoder_hidden"] | |
| ) | |
| self.energy_embedding = nn.Embedding( | |
| n_bins, model_config["transformer"]["encoder_hidden"] | |
| ) | |
| def get_pitch_embedding(self, x, target, mask, control): | |
| prediction = self.pitch_predictor(x, mask) | |
| if target is not None: | |
| embedding = self.pitch_embedding(torch.bucketize(target, self.pitch_bins)) | |
| else: | |
| prediction = prediction * control | |
| embedding = self.pitch_embedding( | |
| torch.bucketize(prediction, self.pitch_bins) | |
| ) | |
| return prediction, embedding | |
| def get_energy_embedding(self, x, target, mask, control): | |
| prediction = self.energy_predictor(x, mask) | |
| if target is not None: | |
| embedding = self.energy_embedding(torch.bucketize(target, self.energy_bins)) | |
| else: | |
| prediction = prediction * control | |
| embedding = self.energy_embedding( | |
| torch.bucketize(prediction, self.energy_bins) | |
| ) | |
| return prediction, embedding | |
| def forward( | |
| self, | |
| x, | |
| src_mask, | |
| mel_mask=None, | |
| max_len=None, | |
| pitch_target=None, | |
| energy_target=None, | |
| duration_target=None, | |
| p_control=1.0, | |
| e_control=1.0, | |
| d_control=1.0, | |
| ): | |
| log_duration_prediction = self.duration_predictor(x, src_mask) | |
| if self.pitch_feature_level == "phoneme_level": | |
| pitch_prediction, pitch_embedding = self.get_pitch_embedding( | |
| x, pitch_target, src_mask, p_control | |
| ) | |
| x = x + pitch_embedding | |
| if self.energy_feature_level == "phoneme_level": | |
| energy_prediction, energy_embedding = self.get_energy_embedding( | |
| x, energy_target, src_mask, e_control | |
| ) | |
| x = x + energy_embedding | |
| if duration_target is not None: | |
| x, mel_len = self.length_regulator(x, duration_target, max_len) | |
| duration_rounded = duration_target | |
| else: | |
| duration_rounded = torch.clamp( | |
| (torch.round(torch.exp(log_duration_prediction) - 1) * d_control), | |
| min=0, | |
| ) | |
| x, mel_len = self.length_regulator(x, duration_rounded, max_len) | |
| mel_mask = get_mask_from_lengths(mel_len) | |
| if self.pitch_feature_level == "frame_level": | |
| pitch_prediction, pitch_embedding = self.get_pitch_embedding( | |
| x, pitch_target, mel_mask, p_control | |
| ) | |
| x = x + pitch_embedding | |
| if self.energy_feature_level == "frame_level": | |
| energy_prediction, energy_embedding = self.get_energy_embedding( | |
| x, energy_target, mel_mask, p_control | |
| ) | |
| x = x + energy_embedding | |
| return ( | |
| x, | |
| pitch_prediction, | |
| energy_prediction, | |
| log_duration_prediction, | |
| duration_rounded, | |
| mel_len, | |
| mel_mask, | |
| ) | |
| class LengthRegulator(nn.Module): | |
| """Length Regulator""" | |
| def __init__(self): | |
| super(LengthRegulator, self).__init__() | |
| def LR(self, x, duration, max_len): | |
| output = list() | |
| mel_len = list() | |
| for batch, expand_target in zip(x, duration): | |
| expanded = self.expand(batch, expand_target) | |
| output.append(expanded) | |
| mel_len.append(expanded.shape[0]) | |
| if max_len is not None: | |
| output = pad(output, max_len) | |
| else: | |
| output = pad(output) | |
| return output, torch.LongTensor(mel_len).to(device) | |
| def expand(self, batch, predicted): | |
| out = list() | |
| for i, vec in enumerate(batch): | |
| expand_size = predicted[i].item() | |
| out.append(vec.expand(max(int(expand_size), 0), -1)) | |
| out = torch.cat(out, 0) | |
| return out | |
| def forward(self, x, duration, max_len): | |
| output, mel_len = self.LR(x, duration, max_len) | |
| return output, mel_len | |
| class VariancePredictor(nn.Module): | |
| """Duration, Pitch and Energy Predictor""" | |
| def __init__(self, model_config): | |
| super(VariancePredictor, self).__init__() | |
| self.input_size = model_config["transformer"]["encoder_hidden"] | |
| self.filter_size = model_config["variance_predictor"]["filter_size"] | |
| self.kernel = model_config["variance_predictor"]["kernel_size"] | |
| self.conv_output_size = model_config["variance_predictor"]["filter_size"] | |
| self.dropout = model_config["variance_predictor"]["dropout"] | |
| self.conv_layer = nn.Sequential( | |
| OrderedDict( | |
| [ | |
| ( | |
| "conv1d_1", | |
| Conv( | |
| self.input_size, | |
| self.filter_size, | |
| kernel_size=self.kernel, | |
| padding=(self.kernel - 1) // 2, | |
| ), | |
| ), | |
| ("relu_1", nn.ReLU()), | |
| ("layer_norm_1", nn.LayerNorm(self.filter_size)), | |
| ("dropout_1", nn.Dropout(self.dropout)), | |
| ( | |
| "conv1d_2", | |
| Conv( | |
| self.filter_size, | |
| self.filter_size, | |
| kernel_size=self.kernel, | |
| padding=1, | |
| ), | |
| ), | |
| ("relu_2", nn.ReLU()), | |
| ("layer_norm_2", nn.LayerNorm(self.filter_size)), | |
| ("dropout_2", nn.Dropout(self.dropout)), | |
| ] | |
| ) | |
| ) | |
| self.linear_layer = nn.Linear(self.conv_output_size, 1) | |
| def forward(self, encoder_output, mask): | |
| out = self.conv_layer(encoder_output) | |
| out = self.linear_layer(out) | |
| out = out.squeeze(-1) | |
| if mask is not None: | |
| out = out.masked_fill(mask, 0.0) | |
| return out | |
| class Conv(nn.Module): | |
| """ | |
| Convolution Module | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| bias=True, | |
| w_init="linear", | |
| ): | |
| """ | |
| :param in_channels: dimension of input | |
| :param out_channels: dimension of output | |
| :param kernel_size: size of kernel | |
| :param stride: size of stride | |
| :param padding: size of padding | |
| :param dilation: dilation rate | |
| :param bias: boolean. if True, bias is included. | |
| :param w_init: str. weight inits with xavier initialization. | |
| """ | |
| super(Conv, self).__init__() | |
| self.conv = nn.Conv1d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| bias=bias, | |
| ) | |
| def forward(self, x): | |
| x = x.contiguous().transpose(1, 2) | |
| x = self.conv(x) | |
| x = x.contiguous().transpose(1, 2) | |
| return x | |