Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from matplotlib import gridspec | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from PIL import Image | |
| import tensorflow as tf | |
| from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation | |
| feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b2-finetuned-cityscapes-1024-1024") | |
| model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-cityscapes-1024-1024") | |
| def ade_palette(): | |
| """ADE20K palette that maps each class to RGB values.""" | |
| return [ | |
| [255, 0, 0], | |
| [255, 187, 0], | |
| [255, 228, 0], | |
| [10, 10, 10], | |
| [50, 50, 50], | |
| [200, 10, 50], | |
| [0, 0, 80], | |
| [0, 200, 30], | |
| [0, 30, 30], | |
| [0, 10, 35], | |
| [132, 102, 160], | |
| [236, 103, 45], | |
| [1, 1, 1], | |
| [47, 37, 16], | |
| [0, 70, 14], | |
| [73, 10, 4], | |
| [23, 0, 102], | |
| [130, 80, 0], | |
| [0, 0, 255] | |
| ] | |
| labels_list = [] | |
| with open(r'labels.txt', 'r') as fp: | |
| for line in fp: | |
| labels_list.append(line[:-1]) | |
| colormap = np.asarray(ade_palette()) | |
| def label_to_color_image(label): | |
| if label.ndim != 2: | |
| raise ValueError("Expect 2-D input label") | |
| if np.max(label) >= len(colormap): | |
| raise ValueError("label value too large.") | |
| return colormap[label] | |
| def draw_plot(pred_img, seg): | |
| fig = plt.figure(figsize=(20, 15)) | |
| grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) | |
| plt.subplot(grid_spec[0]) | |
| plt.imshow(pred_img) | |
| plt.axis('off') | |
| LABEL_NAMES = np.asarray(labels_list) | |
| FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) | |
| FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) | |
| unique_labels = np.unique(seg.numpy().astype("uint8")) | |
| ax = plt.subplot(grid_spec[1]) | |
| plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") | |
| ax.yaxis.tick_right() | |
| plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) | |
| plt.xticks([], []) | |
| ax.tick_params(width=0.0, labelsize=25) | |
| return fig | |
| def sepia(input_img): | |
| input_img = Image.fromarray(input_img) | |
| inputs = feature_extractor(images=input_img, return_tensors="tf") | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| logits = tf.transpose(logits, [0, 2, 3, 1]) | |
| logits = tf.image.resize( | |
| logits, input_img.size[::-1] | |
| ) # We reverse the shape of `image` because `image.size` returns width and height. | |
| seg = tf.math.argmax(logits, axis=-1)[0] | |
| color_seg = np.zeros( | |
| (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 | |
| ) # height, width, 3 | |
| for label, color in enumerate(colormap): | |
| color_seg[seg.numpy() == label, :] = color | |
| # Show image + mask | |
| pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 | |
| pred_img = pred_img.astype(np.uint8) | |
| fig = draw_plot(pred_img, seg) | |
| return fig | |
| #def prepro_img(img): | |
| #print("Preprocessing image...") | |
| #img = img.resize((1024,1024)) | |
| #print("Image preprocessing completed.") | |
| #return img | |
| demo = gr.Interface(fn=sepia, | |
| inputs=gr.Image(shape=(400, 600)), | |
| #inputs=gr.Image(type='pil', prepeocessing_function=prepro_img), | |
| outputs=['plot'], | |
| examples=["city-1c.jpg"], | |
| allow_flagging='never') | |
| demo.launch() | |