File size: 8,496 Bytes
2dd9b98
 
e5c9ce6
2dd9b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c68191
2dd9b98
 
8c68191
 
 
 
2dd9b98
 
e5c9ce6
2dd9b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c9ce6
2dd9b98
 
8c68191
2dd9b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c68191
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextIteratorStreamer
import torch
from threading import Thread
from huggingface_hub import Repository
import json

theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
# filesystem to save input and outputs
HF_TOKEN = os.environ.get("HF_TOKEN", None)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if HF_TOKEN:
    repo = Repository(
        local_dir="data", clone_from="philschmid/playground-prompts", use_auth_token=HF_TOKEN, repo_type="dataset"
    )


# Load peft config for pre-trained checkpoint etc.
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
model_id = "philschmid/instruct-igel-001"
if device == "cpu":
    model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True)
else:
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt_template = f"### Anweisung:\n{{input}}\n\n### Antwort:"


def generate(instruction, temperature, max_new_tokens, top_p, length_penalty):
    formatted_instruction = prompt_template.format(input=instruction)
    # COMMENT IN FOR NON STREAMING
    # generation_config = GenerationConfig(
    #     do_sample=True,
    #     top_p=top_p,
    #     temperature=temperature,
    #     max_new_tokens=max_new_tokens,
    #     early_stopping=True,
    #     length_penalty=length_penalty,
    #     eos_token_id=tokenizer.eos_token_id,
    #     pad_token_id=tokenizer.pad_token_id,
    # )

    # input_ids = tokenizer(
    #     formatted_instruction, return_tensors="pt", truncation=True, max_length=2048
    # ).input_ids.cuda()

    # with torch.inference_mode(), torch.autocast("cuda"):
    #     outputs = model.generate(input_ids=input_ids, generation_config=generation_config)[0]

    # output = tokenizer.decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)
    # return output.split("### Antwort:\n")[1]

    # STREAMING BASED ON git+https://github.com/gante/transformers.git@streamer_iterator

    # streaming
    streamer = TextIteratorStreamer(tokenizer)
    model_inputs = tokenizer(formatted_instruction, return_tensors="pt", truncation=True, max_length=2048)
    # move to gpu
    model_inputs = {k: v.to(device) for k, v in model_inputs.items()}

    generate_kwargs = dict(
        top_p=top_p,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        early_stopping=True,
        length_penalty=length_penalty,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id,
    )
    t = Thread(target=model.generate, kwargs={**dict(model_inputs, streamer=streamer), **generate_kwargs})
    t.start()

    output = ""
    hidden_output = ""
    for new_text in streamer:
        # skip streaming until new text is available
        if len(hidden_output) <= len(formatted_instruction):
            hidden_output += new_text
            continue
        # replace eos token
        if tokenizer.eos_token in new_text:
            new_text = new_text.replace(tokenizer.eos_token, "")
        output += new_text
        yield output
    if HF_TOKEN:
        save_inputs_and_outputs(formatted_instruction, output, generate_kwargs)
    return output


def save_inputs_and_outputs(inputs, outputs, generate_kwargs):
    with open(os.path.join("data", "prompts.jsonl"), "a") as f:
        json.dump({"inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}, f, ensure_ascii=False)
        f.write("\n")
        commit_url = repo.push_to_hub()


examples = [
    """Beantworten Sie die Frage am Ende des Textes anhand der folgenden Zusammenhänge. Wenn Sie die Antwort nicht wissen, sagen Sie, dass Sie es nicht wissen, versuchen Sie nicht, eine Antwort zu erfinden.
"Das Unternehmen wurde 2016 von den französischen Unternehmern Clément Delangue, Julien Chaumond und Thomas Wolf gegründet und entwickelte ursprünglich eine Chatbot-App, die sich an Teenager richtete.[2] Nachdem das Modell hinter dem Chatbot offengelegt wurde, konzentrierte sich das Unternehmen auf eine Plattform für maschinelles Lernen.

Im März 2021 sammelte Hugging Face in einer Serie-B-Finanzierungsrunde 40 Millionen US-Dollar ein[3].

Am 28. April 2021 rief das Unternehmen in Zusammenarbeit mit mehreren anderen Forschungsgruppen den BigScience Research Workshop ins Leben, um ein offenes großes Sprachmodell zu veröffentlichen.[4] Im Jahr 2022 wurde der Workshop mit der Ankündigung von BLOOM abgeschlossen, einem mehrsprachigen großen Sprachmodell mit 176 Milliarden Parametern.[5]"

Frage: Wann wurde Hugging Face gegründet?""",
    "Erklären Sie, was eine API ist.",
    "Bitte beantworten Sie die folgende Frage. Wer wird der nächste Ballon d'or sein?",
    "Beantworten Sie die folgende Ja/Nein-Frage, indem Sie Schritt für Schritt argumentieren. Kannst du ein ganzes Haiku in einem einzigen Tweet schreiben?",
    "Schreibe eine Produktbeschreibung für einen LG 43UQ75009LF 109 cm (43 Zoll) UHD Fernseher (Active HDR, 60 Hz, Smart TV) [Modelljahr 2022]",
]


with gr.Blocks(theme=theme) as demo:
    with gr.Column():
        gr.Markdown(
            """<h1><center>IGEL - Instruction-tuned German large Language Model for Text</center></h1>
            <p>
            IGEL is a LLM model family developed for the German language. The first version of IGEL is built on top <a href="https://bigscience.huggingface.co/blog/bloom" target="_blank">BigScience BLOOM</a> adapted to the <a href="https://huggingface.co/malteos/bloom-6b4-clp-german">German language by Malte Ostendorff</a>. IGEL designed to provide accurate and reliable language understanding capabilities for a wide range of natural language understanding tasks, including sentiment analysis, language translation, and question answering.
            
            The IGEL family includes instruction [instruct-igel-001](https://huggingface.co/philschmid/instruct-igel-001) and `chat-igel-001` _coming soon_.
            </p>
      """
        )
        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Hier Anweisung eingeben...", label="Anweisung")
                output = gr.Textbox(
                    interactive=False,
                    lines=8,
                    label="Antwort",
                    placeholder="Hier Antwort erscheint...",
                )
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(examples=examples, inputs=[instruction])

            with gr.Column(scale=1):
                temperature = gr.Slider(
                    label="Temperature",
                    value=1.0,
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    interactive=True,
                    info="The higher more random",
                )
                max_new_tokens = gr.Slider(
                    label="Max new tokens",
                    value=256,
                    minimum=0,
                    maximum=2048,
                    step=5,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                )
                top_p = gr.Slider(
                    label="Top p",
                    value=0.9,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="probabilities that add up are kept",
                )
                length_penalty = gr.Slider(
                    label="Length penalty",
                    value=1.0,
                    minimum=-10.0,
                    maximum=10.0,
                    step=0.1,
                    interactive=True,
                    info="> 0.0 longer, < 0.0 shorter",
                )

    submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, length_penalty], outputs=[output])
    instruction.submit(
        generate, inputs=[instruction, temperature, max_new_tokens, top_p, length_penalty], outputs=[output]
    )

demo.queue()
demo.launch()