# Install Gradio if you haven't already import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image # Load the processor and model processor = TrOCRProcessor.from_pretrained('openthaigpt/thai-trocr') model = VisionEncoderDecoderModel.from_pretrained('openthaigpt/thai-trocr') # Define the prediction function def extract_text_from_image(image): # Process the input image and run the OCR model pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text # Set up the Gradio interface interface = gr.Interface( fn=extract_text_from_image, # Function to process the image inputs=gr.Image(type="pil"), # Input is an image (PIL format) outputs="text", # Output is text title="Thai OCR with TrOCR", description="Upload an image containing Thai text, and this model will extract the text using a Thai-adapted TrOCR model.", examples=["path/to/example_image.jpg"] # Optional: add a sample image path here for users to try ) # Launch the interface interface.launch()