pierrefdz commited on
Commit
959dbd8
·
1 Parent(s): 6b687a7
Files changed (1) hide show
  1. app.py +27 -1
app.py CHANGED
@@ -52,6 +52,32 @@ def calculate_rewards(subscription, num_generations, author_share, ro_share, num
52
  def main():
53
  st.title("Reward Simulator")
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  # Load model and index
56
  model = load_model()
57
  index = load_index("data/openimages_index.bin")
@@ -153,7 +179,7 @@ def main():
153
  st.session_state.query_image = Image.open(uploaded_file).convert('RGB')
154
 
155
  # Display selected image
156
- st.subheader("Query Image:")
157
  st.image(st.session_state.query_image, caption="Selected Image", width=300)
158
 
159
  # Get features and search
 
52
  def main():
53
  st.title("Reward Simulator")
54
 
55
+ # Add introduction text and expandable details
56
+ st.markdown("""
57
+ This simulator helps estimate potential rewards for authors and rights owners when their images are used
58
+ to train AI image generation models.
59
+ """)
60
+
61
+ with st.expander("Learn more about how it works"):
62
+ st.markdown("""
63
+ ### How it works
64
+ 1. Select or upload an image that represents AI-generated content
65
+ 2. The system finds similar images that might have influenced the generation in a database of 10M images (OpenImages)
66
+ 3. Based on your parameters, it calculates potential rewards for:
67
+ - Original image authors
68
+ - Rights owners (e.g., stock photo companies, galleries)
69
+
70
+ ### Key assumptions
71
+ - Attribution scores indicate the level of influence of training images
72
+ - Rewards are distributed based on subscription revenue
73
+ - Calculations use simplified models and are for demonstration purposes
74
+
75
+ ### Use cases
76
+ - Explore fair compensation models for AI training data
77
+ - Simulate different revenue sharing scenarios
78
+ - Understand the relationship between model training and attribution
79
+ """)
80
+
81
  # Load model and index
82
  model = load_model()
83
  index = load_index("data/openimages_index.bin")
 
179
  st.session_state.query_image = Image.open(uploaded_file).convert('RGB')
180
 
181
  # Display selected image
182
+ st.subheader("You query image:")
183
  st.image(st.session_state.query_image, caption="Selected Image", width=300)
184
 
185
  # Get features and search