pierreguillou commited on
Commit
c45522e
·
1 Parent(s): 6dbb555

Update files/functions.py

Browse files
Files changed (1) hide show
  1. files/functions.py +97 -60
files/functions.py CHANGED
@@ -117,7 +117,7 @@ langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
117
  # get text and bounding boxes from an image
118
  # https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
119
  # https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
120
- def get_data(results, factor, conf_min=0):
121
 
122
  data = {}
123
  for i in range(len(results['line_num'])):
@@ -160,43 +160,55 @@ def get_data(results, factor, conf_min=0):
160
  par_idx += 1
161
 
162
  # get lines of texts, grouped by paragraph
163
- lines = list()
164
  row_indexes = list()
 
 
165
  row_index = 0
166
  for _,par in par_data.items():
167
  count_lines = 0
 
168
  for _,line in par.items():
169
  if count_lines == 0: row_indexes.append(row_index)
170
  line_text = ' '.join([item[0] for item in line])
171
- lines.append(line_text)
 
172
  count_lines += 1
173
  row_index += 1
174
  # lines.append("\n")
175
  row_index += 1
 
 
176
  # lines = lines[:-1]
177
 
178
  # get paragraphes boxes (par_boxes)
179
  # get lines boxes (line_boxes)
180
  par_boxes = list()
181
  par_idx = 1
182
- line_boxes = list()
183
  line_idx = 1
184
  for _, par in par_data.items():
185
  xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
 
 
186
  for _, line in par.items():
187
  xmin, ymin = line[0][1], line[0][2]
188
  xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
189
  line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
 
190
  xmins.append(xmin)
191
  ymins.append(ymin)
192
  xmaxs.append(xmax)
193
  ymaxs.append(ymax)
194
  line_idx += 1
 
195
  xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
196
- par_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
 
 
197
  par_idx += 1
198
 
199
- return lines, row_indexes, par_boxes, line_boxes #data, par_data #
200
 
201
  # rescale image to get 300dpi
202
  def set_image_dpi_resize(image):
@@ -259,7 +271,8 @@ def original_box(box, original_width, original_height, coco_width, coco_height):
259
  ]
260
 
261
  def get_blocks(bboxes_block, categories, texts):
262
- # get list of unique block boxes
 
263
  bbox_block_dict, bboxes_block_list, bbox_block_prec = dict(), list(), list()
264
  for count_block, bbox_block in enumerate(bboxes_block):
265
  if bbox_block != bbox_block_prec:
@@ -324,7 +337,7 @@ def sort_data_wo_labels(bboxes, texts):
324
 
325
  return sorted_bboxes, sorted_texts
326
 
327
- ## PDF processing
328
 
329
  # get filename and images of PDF pages
330
  def pdf_to_images(uploaded_pdf):
@@ -358,6 +371,44 @@ def pdf_to_images(uploaded_pdf):
358
 
359
  return filename, msg, images
360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361
  # Extraction of image data (text and bounding boxes)
362
  def extraction_data_from_image(images):
363
 
@@ -367,8 +418,8 @@ def extraction_data_from_image(images):
367
 
368
  # https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
369
  custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
370
- results, lines, row_indexes, par_boxes, line_boxes = dict(), dict(), dict(), dict(), dict()
371
- images_ids_list, lines_list, par_boxes_list, line_boxes_list, images_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list()
372
 
373
  try:
374
  for i,image in enumerate(images):
@@ -380,14 +431,13 @@ def extraction_data_from_image(images):
380
  img = np.array(img, dtype='uint8') # convert PIL to cv2
381
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
382
  ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
383
-
384
  # OCR PyTesseract | get langs of page
385
  txt = pytesseract.image_to_string(img, config=custom_config)
386
  txt = txt.strip().lower()
387
  txt = re.sub(r" +", " ", txt) # multiple space
388
  txt = re.sub(r"(\n\s*)+\n+", "\n", txt) # multiple line
389
  # txt = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
390
-
391
  try:
392
  langs = detect_langs(txt)
393
  langs = [langdetect2Tesseract[langs[i].lang] for i in range(len(langs))]
@@ -395,36 +445,37 @@ def extraction_data_from_image(images):
395
  except:
396
  langs_string = "eng"
397
  langs_string += '+osd'
398
- print("langs_string", langs_string)
399
- custom_config = f'--oem 3 --psm 3 -l {langs_string} tsv' # default config PyTesseract: --oem 3 --psm 3
400
 
401
  # OCR PyTesseract | get data
402
  results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
403
  # results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
404
 
405
- lines[i], row_indexes[i], par_boxes[i], line_boxes[i] = get_data(results[i], factor, conf_min=0)
406
- lines_list.append(lines[i])
 
 
407
  par_boxes_list.append(par_boxes[i])
408
  line_boxes_list.append(line_boxes[i])
 
409
  images_ids_list.append(i)
410
  images_list.append(images[i])
411
  page_no_list.append(i)
412
- num_pages_list.append(num_imgs)
413
 
414
  except:
415
  print(f"There was an error within the extraction of PDF text by the OCR!")
416
  else:
417
  from datasets import Dataset
418
- dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts": lines_list, "bboxes_par": par_boxes_list})
419
 
420
- print(f"The text data was successfully extracted by the OCR!")
421
 
422
- return dataset, lines, row_indexes, par_boxes, line_boxes
423
 
424
  ## Inference
425
 
426
- # def prepare_inference_features(example, cls_box=cls_box, sep_box=sep_box):
427
- def prepare_inference_features(example):
428
 
429
  images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list = list(), list(), list(), list(), list()
430
 
@@ -433,7 +484,7 @@ def prepare_inference_features(example):
433
  batch_images_ids = example["images_ids"]
434
  batch_images = example["images"]
435
  batch_bboxes_par = example["bboxes_par"]
436
- batch_texts = example["texts"]
437
  batch_images_size = [image.size for image in batch_images]
438
 
439
  batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
@@ -443,50 +494,36 @@ def prepare_inference_features(example):
443
  batch_images_ids = [batch_images_ids]
444
  batch_images = [batch_images]
445
  batch_bboxes_par = [batch_bboxes_par]
446
- batch_texts = [batch_texts]
447
  batch_width, batch_height = [batch_width], [batch_height]
448
-
449
  # process all images of the batch
450
- for num_batch, (image_id, boxes, texts, width, height) in enumerate(zip(batch_images_ids, batch_bboxes_par, batch_texts, batch_width, batch_height)):
451
  tokens_list = []
452
  bboxes_list = []
453
 
454
  # add a dimension if only on image
455
- if not isinstance(texts, list):
456
- texts, boxes = [texts], [boxes]
457
 
458
  # convert boxes to original
459
  normalize_bboxes_par = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
460
 
461
  # sort boxes with texts
462
  # we want sorted lists from top to bottom of the image
463
- boxes, texts = sort_data_wo_labels(normalize_bboxes_par, texts)
464
-
465
- bboxes_unique_list, texts_blocks = list(), list()
466
- bbox_prev = [-100, -100, -100, -100]
467
- for bbox, text in zip(boxes, texts):
468
- if bbox != bbox_prev and bbox != cls_box:
469
- bboxes_unique_list.append(bbox)
470
- texts_block = text
471
- else:
472
- if bbox != cls_box:
473
- texts_block += '\n' + text
474
- else:
475
- texts_blocks.append(texts_block)
476
- bbox_prev = bbox
477
 
478
  count = 0
479
- for box, text in zip(bboxes_unique_list, texts_blocks):
480
- tokens = tokenizer.tokenize(text)
481
- num_tokens = len(tokens) # get number of tokens
482
- tokens_list.extend(tokens)
483
-
484
- bboxes_list.extend([box] * num_tokens) # number of boxes must be the same as the number of tokens
485
 
486
  # use of return_overflowing_tokens=True / stride=doc_stride
487
  # to get parts of image with overlap
488
  # source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
489
- encodings = tokenizer(" ".join(texts),
490
  truncation=True,
491
  padding="max_length",
492
  max_length=max_length,
@@ -531,7 +568,7 @@ def prepare_inference_features(example):
531
  "normalized_bboxes": bb_list,
532
  }
533
 
534
- from torch.utils.data import Dataset
535
 
536
  class CustomDataset(Dataset):
537
  def __init__(self, dataset, tokenizer):
@@ -550,11 +587,10 @@ class CustomDataset(Dataset):
550
  encoding["input_ids"] = example["input_ids"]
551
  encoding["attention_mask"] = example["attention_mask"]
552
  encoding["bbox"] = example["normalized_bboxes"]
553
- # encoding["labels"] = example["labels"]
554
 
555
  return encoding
556
-
557
- import torch.nn.functional as F
558
 
559
  # get predictions at token level
560
  def predictions_token_level(images, custom_encoded_dataset):
@@ -563,6 +599,7 @@ def predictions_token_level(images, custom_encoded_dataset):
563
  if num_imgs > 0:
564
 
565
  chunk_ids, input_ids, bboxes, outputs, token_predictions = dict(), dict(), dict(), dict(), dict()
 
566
  images_ids_list = list()
567
 
568
  for i,encoding in enumerate(custom_encoded_dataset):
@@ -605,8 +642,8 @@ def predictions_token_level(images, custom_encoded_dataset):
605
 
606
  from functools import reduce
607
 
608
- # Get predictions (paragraph level)
609
- def predictions_paragraph_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes):
610
 
611
  ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
612
  bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
@@ -672,7 +709,7 @@ def predictions_paragraph_level(dataset, outputs, images_ids_list, chunk_ids, in
672
  input_ids_dict[str(bbox)].append(input_id)
673
  probs_dict[str(bbox)].append(probs)
674
  bbox_prev = bbox
675
-
676
  probs_bbox = dict()
677
  for i,bbox in enumerate(bboxes_list):
678
  probs = probs_dict[str(bbox)]
@@ -700,8 +737,8 @@ def predictions_paragraph_level(dataset, outputs, images_ids_list, chunk_ids, in
700
  else:
701
  print("An error occurred while getting predictions!")
702
 
703
- # Get labeled images with paragraphs bounding boxes
704
- def get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict):
705
 
706
  labeled_images = list()
707
 
@@ -775,7 +812,7 @@ def get_encoded_chunk_inference(index_chunk=None):
775
  del input_ids_dict[str(bboxes_list[-1])]
776
  bboxes_list = bboxes_list[:-1]
777
 
778
- # get texts by paragraph
779
  input_ids_list = input_ids_dict.values()
780
  texts_list = [tokenizer.decode(input_ids) for input_ids in input_ids_list]
781
 
@@ -816,7 +853,7 @@ def display_chunk_paragraphs_inference(index_chunk=None):
816
  cv2.waitKey(0)
817
 
818
  # display image dataframe
819
- print("\n>> Dataframe of annotated lines\n")
820
  cols = ["texts", "bboxes"]
821
  df = df[cols]
822
  display(df)
 
117
  # get text and bounding boxes from an image
118
  # https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
119
  # https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
120
+ def get_data_paragraph(results, factor, conf_min=0):
121
 
122
  data = {}
123
  for i in range(len(results['line_num'])):
 
160
  par_idx += 1
161
 
162
  # get lines of texts, grouped by paragraph
163
+ texts_pars = list()
164
  row_indexes = list()
165
+ texts_lines = list()
166
+ texts_lines_par = list()
167
  row_index = 0
168
  for _,par in par_data.items():
169
  count_lines = 0
170
+ lines_par = list()
171
  for _,line in par.items():
172
  if count_lines == 0: row_indexes.append(row_index)
173
  line_text = ' '.join([item[0] for item in line])
174
+ texts_lines.append(line_text)
175
+ lines_par.append(line_text)
176
  count_lines += 1
177
  row_index += 1
178
  # lines.append("\n")
179
  row_index += 1
180
+ texts_lines_par.append(lines_par)
181
+ texts_pars.append(' '.join(lines_par))
182
  # lines = lines[:-1]
183
 
184
  # get paragraphes boxes (par_boxes)
185
  # get lines boxes (line_boxes)
186
  par_boxes = list()
187
  par_idx = 1
188
+ line_boxes, lines_par_boxes = list(), list()
189
  line_idx = 1
190
  for _, par in par_data.items():
191
  xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
192
+ line_boxes_par = list()
193
+ count_line_par = 0
194
  for _, line in par.items():
195
  xmin, ymin = line[0][1], line[0][2]
196
  xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
197
  line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
198
+ line_boxes_par.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
199
  xmins.append(xmin)
200
  ymins.append(ymin)
201
  xmaxs.append(xmax)
202
  ymaxs.append(ymax)
203
  line_idx += 1
204
+ count_line_par += 1
205
  xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
206
+ par_bbox = [int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)]
207
+ par_boxes.append(par_bbox)
208
+ lines_par_boxes.append(line_boxes_par)
209
  par_idx += 1
210
 
211
+ return texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
212
 
213
  # rescale image to get 300dpi
214
  def set_image_dpi_resize(image):
 
271
  ]
272
 
273
  def get_blocks(bboxes_block, categories, texts):
274
+
275
+ # get list of unique block boxes
276
  bbox_block_dict, bboxes_block_list, bbox_block_prec = dict(), list(), list()
277
  for count_block, bbox_block in enumerate(bboxes_block):
278
  if bbox_block != bbox_block_prec:
 
337
 
338
  return sorted_bboxes, sorted_texts
339
 
340
+ ## PDf Processing
341
 
342
  # get filename and images of PDF pages
343
  def pdf_to_images(uploaded_pdf):
 
371
 
372
  return filename, msg, images
373
 
374
+ # get filename and images of PDF pages
375
+ def pdf_to_images(uploaded_pdf):
376
+
377
+ # file name of the uploaded PDF
378
+ filename = next(iter(uploaded_pdf))
379
+
380
+ try:
381
+ PdfReader(filename)
382
+ except PdfReadError:
383
+ print("Invalid PDF file.")
384
+ else:
385
+ try:
386
+ images = convert_from_path(str(filename))
387
+ num_imgs = len(images)
388
+ print(f'The PDF "{filename}"" was converted into {num_imgs} images.')
389
+ print("Now, you can extract data from theses images (text, bounding boxes...).")
390
+ except:
391
+ print(f"Error with the PDF {filename}:it was not converted into images.")
392
+ print()
393
+ else:
394
+ # display images
395
+ if num_imgs > 0:
396
+
397
+ import matplotlib.pyplot as plt
398
+ %matplotlib inline
399
+
400
+ plt.figure(figsize=(20,10))
401
+ columns = 5
402
+ for i, image in enumerate(images):
403
+ plt.subplot(num_imgs / columns + 1, columns, i + 1)
404
+ plt.xticks(color="white")
405
+ plt.yticks(color="white")
406
+ plt.tick_params(bottom = False)
407
+ plt.tick_params(left = False)
408
+ plt.imshow(image)
409
+
410
+ return filename, images
411
+
412
  # Extraction of image data (text and bounding boxes)
413
  def extraction_data_from_image(images):
414
 
 
418
 
419
  # https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
420
  custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
421
+ results, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes = dict(), dict(), dict(), dict(), dict(), dict(), dict(), dict()
422
+ images_ids_list, texts_lines_list, texts_pars_list, texts_lines_par_list, par_boxes_list, line_boxes_list, lines_par_boxes_list, images_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list(), list(), list(), list()
423
 
424
  try:
425
  for i,image in enumerate(images):
 
431
  img = np.array(img, dtype='uint8') # convert PIL to cv2
432
  img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
433
  ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
434
+
435
  # OCR PyTesseract | get langs of page
436
  txt = pytesseract.image_to_string(img, config=custom_config)
437
  txt = txt.strip().lower()
438
  txt = re.sub(r" +", " ", txt) # multiple space
439
  txt = re.sub(r"(\n\s*)+\n+", "\n", txt) # multiple line
440
  # txt = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
 
441
  try:
442
  langs = detect_langs(txt)
443
  langs = [langdetect2Tesseract[langs[i].lang] for i in range(len(langs))]
 
445
  except:
446
  langs_string = "eng"
447
  langs_string += '+osd'
448
+ custom_config = f'--oem 3 --psm 3 -l {langs_string}' # default config PyTesseract: --oem 3 --psm 3
 
449
 
450
  # OCR PyTesseract | get data
451
  results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
452
  # results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
453
 
454
+ texts_lines[i], texts_pars[i], texts_lines_par[i], row_indexes[i], par_boxes[i], line_boxes[i], lines_par_boxes[i] = get_data_paragraph(results[i], factor, conf_min=0)
455
+ texts_lines_list.append(texts_lines[i])
456
+ texts_pars_list.append(texts_pars[i])
457
+ texts_lines_par_list.append(texts_lines_par[i])
458
  par_boxes_list.append(par_boxes[i])
459
  line_boxes_list.append(line_boxes[i])
460
+ lines_par_boxes_list.append(lines_par_boxes[i])
461
  images_ids_list.append(i)
462
  images_list.append(images[i])
463
  page_no_list.append(i)
464
+ num_pages_list.append(num_imgs)
465
 
466
  except:
467
  print(f"There was an error within the extraction of PDF text by the OCR!")
468
  else:
469
  from datasets import Dataset
470
+ dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts_line": texts_lines_list, "texts_par": texts_pars_list, "texts_lines_par": texts_lines_par_list, "bboxes_par": par_boxes_list, "bboxes_lines_par":lines_par_boxes_list})
471
 
472
+ # print(f"The text data was successfully extracted by the OCR!")
473
 
474
+ return dataset, texts_lines, texts_pars, texts_lines_par, row_indexes, par_boxes, line_boxes, lines_par_boxes
475
 
476
  ## Inference
477
 
478
+ def prepare_inference_features_paragraph(example, cls_box = cls_box, sep_box = sep_box):
 
479
 
480
  images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list = list(), list(), list(), list(), list()
481
 
 
484
  batch_images_ids = example["images_ids"]
485
  batch_images = example["images"]
486
  batch_bboxes_par = example["bboxes_par"]
487
+ batch_texts_par = example["texts_par"]
488
  batch_images_size = [image.size for image in batch_images]
489
 
490
  batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
 
494
  batch_images_ids = [batch_images_ids]
495
  batch_images = [batch_images]
496
  batch_bboxes_par = [batch_bboxes_par]
497
+ batch_texts_par = [batch_texts_par]
498
  batch_width, batch_height = [batch_width], [batch_height]
499
+
500
  # process all images of the batch
501
+ for num_batch, (image_id, boxes, texts_par, width, height) in enumerate(zip(batch_images_ids, batch_bboxes_par, batch_texts_par, batch_width, batch_height)):
502
  tokens_list = []
503
  bboxes_list = []
504
 
505
  # add a dimension if only on image
506
+ if not isinstance(texts_par, list):
507
+ texts_par, boxes = [texts_par], [boxes]
508
 
509
  # convert boxes to original
510
  normalize_bboxes_par = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
511
 
512
  # sort boxes with texts
513
  # we want sorted lists from top to bottom of the image
514
+ boxes, texts_par = sort_data_wo_labels(normalize_bboxes_par, texts_par)
 
 
 
 
 
 
 
 
 
 
 
 
 
515
 
516
  count = 0
517
+ for box, text_par in zip(boxes, texts_par):
518
+ tokens_par = tokenizer.tokenize(text_par)
519
+ num_tokens_par = len(tokens_par) # get number of tokens
520
+ tokens_list.extend(tokens_par)
521
+ bboxes_list.extend([box] * num_tokens_par) # number of boxes must be the same as the number of tokens
 
522
 
523
  # use of return_overflowing_tokens=True / stride=doc_stride
524
  # to get parts of image with overlap
525
  # source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
526
+ encodings = tokenizer(" ".join(texts_par),
527
  truncation=True,
528
  padding="max_length",
529
  max_length=max_length,
 
568
  "normalized_bboxes": bb_list,
569
  }
570
 
571
+ from torch.utils.data import Dataset
572
 
573
  class CustomDataset(Dataset):
574
  def __init__(self, dataset, tokenizer):
 
587
  encoding["input_ids"] = example["input_ids"]
588
  encoding["attention_mask"] = example["attention_mask"]
589
  encoding["bbox"] = example["normalized_bboxes"]
 
590
 
591
  return encoding
592
+
593
+ import torch.nn.functional as F
594
 
595
  # get predictions at token level
596
  def predictions_token_level(images, custom_encoded_dataset):
 
599
  if num_imgs > 0:
600
 
601
  chunk_ids, input_ids, bboxes, outputs, token_predictions = dict(), dict(), dict(), dict(), dict()
602
+ normalize_batch_bboxes_lines_pars = dict()
603
  images_ids_list = list()
604
 
605
  for i,encoding in enumerate(custom_encoded_dataset):
 
642
 
643
  from functools import reduce
644
 
645
+ # Get predictions (line level)
646
+ def predictions_paragraph_level_gradio(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes):
647
 
648
  ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
649
  bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
 
709
  input_ids_dict[str(bbox)].append(input_id)
710
  probs_dict[str(bbox)].append(probs)
711
  bbox_prev = bbox
712
+
713
  probs_bbox = dict()
714
  for i,bbox in enumerate(bboxes_list):
715
  probs = probs_dict[str(bbox)]
 
737
  else:
738
  print("An error occurred while getting predictions!")
739
 
740
+ # Get labeled images with lines bounding boxes
741
+ def get_labeled_images_gradio(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict):
742
 
743
  labeled_images = list()
744
 
 
812
  del input_ids_dict[str(bboxes_list[-1])]
813
  bboxes_list = bboxes_list[:-1]
814
 
815
+ # get texts by line
816
  input_ids_list = input_ids_dict.values()
817
  texts_list = [tokenizer.decode(input_ids) for input_ids in input_ids_list]
818
 
 
853
  cv2.waitKey(0)
854
 
855
  # display image dataframe
856
+ print("\n>> Dataframe of annotated paragraphs\n")
857
  cols = ["texts", "bboxes"]
858
  df = df[cols]
859
  display(df)