File size: 13,974 Bytes
577dea7
 
 
 
 
 
 
0d02fbe
577dea7
0d02fbe
 
 
577dea7
 
 
 
 
 
4661970
 
 
 
 
 
678e223
 
 
 
 
4661970
678e223
 
4661970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577dea7
 
 
 
 
 
 
 
8c7d566
577dea7
 
 
 
 
 
8c7d566
577dea7
 
 
 
 
 
 
 
 
 
 
4661970
0864f99
577dea7
 
4661970
 
 
 
 
 
 
577dea7
 
4661970
 
 
 
 
 
 
 
577dea7
4661970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e91c209
4661970
e91c209
4661970
e91c209
4661970
e91c209
 
4661970
e91c209
 
 
 
 
 
4661970
e91c209
4661970
e91c209
 
4661970
e91c209
 
 
 
 
 
 
 
 
 
4661970
e91c209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4661970
e91c209
 
4661970
8c7d566
e91c209
 
4661970
8c7d566
e91c209
4661970
e91c209
8c7d566
4661970
e91c209
 
8c7d566
4661970
e91c209
 
 
 
 
 
8c7d566
4661970
e91c209
 
 
8c7d566
4661970
8c7d566
 
 
4661970
e91c209
8c7d566
4661970
e91c209
4661970
e91c209
 
8c7d566
4661970
e91c209
8c7d566
e91c209
4661970
e91c209
 
 
4661970
e91c209
 
 
 
 
 
 
 
 
 
 
 
4661970
e91c209
 
4661970
 
 
e91c209
 
 
4661970
 
 
e91c209
 
4661970
e91c209
4661970
e91c209
7d5cf64
 
e91c209
8c7d566
 
e91c209
8c7d566
51dcb5d
 
 
4661970
 
51dcb5d
 
e91c209
 
8c7d566
51dcb5d
4661970
51dcb5d
 
 
 
4661970
 
51dcb5d
 
 
4661970
 
 
51dcb5d
 
 
 
4661970
51dcb5d
4661970
51dcb5d
 
4661970
51dcb5d
4661970
 
51dcb5d
 
 
 
 
4661970
 
51dcb5d
 
4661970
51dcb5d
4661970
51dcb5d
 
 
 
 
4661970
51dcb5d
4661970
51dcb5d
 
4661970
 
51dcb5d
4661970
 
 
51dcb5d
8c7d566
4661970
 
 
 
 
 
51dcb5d
4661970
 
 
 
 
 
 
 
8c7d566
4661970
 
 
 
 
 
 
 
 
 
 
 
 
8c7d566
4661970
 
 
 
e91c209
 
 
 
 
 
577dea7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import gradio as gr
import os
import time
import requests
from datetime import datetime
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import HumanMessage
from langchain_core.caches import BaseCache
from langchain_core.callbacks import Callbacks
ChatGoogleGenerativeAI.model_rebuild()
import pandas as pd
import io
import tempfile
from urllib.parse import urlparse
import re

# Import DocLing and necessary configuration classes
from docling.document_converter import DocumentConverter, PdfFormatOption
from docling.datamodel.pipeline_options import PdfPipelineOptions
from docling.datamodel.base_models import InputFormat

# Import and rebuild ChatGoogleGenerativeAI deferred
try:
    from langchain_google_genai import ChatGoogleGenerativeAI
    from langchain_core.caches import BaseCache
    ChatGoogleGenerativeAI.model_rebuild()
except Exception as e:
    print(f"Warning during rebuild: {e}")
    from langchain_google_genai import ChatGoogleGenerativeAI

# --- START OF OCR CONFIGURATION ---
# Create a single, pre-configured DocumentConverter instance to be reused.
# This is more efficient than creating it on every function call.

# 1. Define the pipeline options to enable OCR for PDFs.
# Configure a single global DocLing converter with Tesseract OCR enabled and all languages
# Note: With tesseract-ocr-all installed, all language data files are available.
pdf_options = PdfPipelineOptions(
    do_ocr=True,
    ocr_model="tesseract",
    # Provide a broad default set. With tesseract-ocr-all, many language packs exist.
    # You can keep this small for speed or expand it. Here we include a practical wide set.
    ocr_languages=[
        "eng","fra","deu","spa","ita","por","nld","pol","tur","ces","rus","ukr","ell","ron","hun",
        "bul","hrv","srp","slk","slv","lit","lav","est","cat","eus","glg","isl","dan","nor","swe",
        "fin","alb","mlt","afr","zul","swa","amh","uzb","aze","kaz","kir","mon","tgl","ind","msa",
        "tha","vie","khm","lao","mya","ben","hin","mar","guj","pan","mal","tam","tel","kan","nep",
        "sin","urd","fas","pus","kur","aze_cyrl","tat","uig","heb","ara","yid","grc","chr","epo",
        "hye","kat","kat_old","aze_latn","mkd","bel","srp_latn","srp_cyrillic",
        # CJK — these are heavier and slower; include only if needed:
        "chi_sim","chi_tra","jpn","kor"
    ]
)

# 2. Create the format-specific configuration.
format_options = {
    InputFormat.PDF: PdfFormatOption(pipeline_options=pdf_options)
}

# 3. Initialize the converter with the OCR configuration.
# This converter will now automatically perform OCR on any PDF file.
docling_converter = DocumentConverter(format_options=format_options)
# --- END OF OCR CONFIGURATION ---

# Model configuration
MODELS = {
    "Gemini 2.5 Flash (Google AI)": {
        "provider": "Google AI",
        "class": ChatGoogleGenerativeAI,
        "model_name": "gemini-2.0-flash-exp",
        "default_api": True
    },
    "ChatGPT 5 (OpenAI)": {
        "provider": "OpenAI",
        "class": ChatOpenAI,
        "model_name": "gpt-4o",
        "default_api": False
    },
    "Claude Sonnet 4 (Anthropic)": {
        "provider": "Anthropic",
        "class": ChatAnthropic,
        "model_name": "claude-3-5-sonnet-20241022",
        "default_api": False
    },
    "Gemini 2.5 Pro (Google AI)": {
        "provider": "Google AI",
        "class": ChatGoogleGenerativeAI,
        "model_name": "gemini-2.0-flash-exp",
        "default_api": False
    }
}

# Default API for Gemini 2.5 Flash via HF Spaces Secrets
DEFAULT_GEMINI_API = os.getenv("FLASH_GOOGLE_API_KEY")

def extract_text_from_file(file):
    """
    Extract text from an uploaded file or path (str).
    - Accepts an object with .name attribute (e.g. Gradio upload) OR a file path (str).
    - DocLing for: .pdf (Tesseract OCR enabled if configured), .docx, .xlsx, .pptx
    - Converts .csv /.xls -> temporary .xlsx then DocLing
    - .txt read directly
    """
    if file is None:
        return ""

    # Normalize to a filesystem path string
    path = file.name if hasattr(file, "name") else str(file)
    ext = os.path.splitext(path)[1].lower()

    docling_direct = {".pdf", ".docx", ".xlsx", ".pptx"}
    to_xlsx_first = {".csv", ".xls"}

    try:
        if ext in docling_direct:
            result = docling_converter.convert(path)
            return result.document.export_to_markdown()

        elif ext in to_xlsx_first:
            # Convert CSV/XLS -> XLSX
            if ext == ".csv":
                df = pd.read_csv(path)
            else:  # .xls
                df = pd.read_excel(path)

            with tempfile.NamedTemporaryFile(delete=True, suffix=".xlsx") as tmp:
                df.to_excel(tmp.name, index=False)
                result = docling_converter.convert(tmp.name)
                return result.document.export_to_markdown()

        elif ext == ".txt":
            with open(path, "r", encoding="utf-8") as f:
                return f.read()

        else:
            return "Unsupported file format"
    except Exception as e:
        return f"Error reading file: {str(e)}"

def extract_text_from_url(url):
    """Extract text from a URL"""
    try:
        response = requests.get(url, timeout=10)
        response.raise_for_status()
        content = response.text
        content = re.sub(r'<[^>]+>', '', content)
        content = re.sub(r'\s+', ' ', content).strip()
        return content[:10000]  # Limit to 10k characters
    except Exception as e:
        return f"Error retrieving URL: {str(e)}"

def get_document_content(text_input, url_input, file_input):
    """Retrieve document content based on source"""
    if text_input.strip():
        return text_input.strip()
    elif url_input.strip():
        return extract_text_from_url(url_input.strip())
    elif file_input is not None:
        return extract_text_from_file(file_input)
    else:
        return ""

def create_llm_instance(model_name, api_key):
    """Create an LLM model instance"""
    model_config = MODELS[model_name]
    if model_config["provider"] == "OpenAI":
        return model_config["class"](
            model=model_config["model_name"],
            api_key=api_key,
            temperature=0.7
        )
    elif model_config["provider"] == "Anthropic":
        return model_config["class"](
            model=model_config["model_name"],
            api_key=api_key,
            temperature=0.7
        )
    elif model_config["provider"] == "Google AI":
        api_to_use = api_key if api_key else DEFAULT_GEMINI_API
        return model_config["class"](
            model=model_config["model_name"],
            google_api_key=api_to_use,
            temperature=0.7
        )

def generate_html(model_name, api_key, text_input, url_input, file_input):
    """Generate educational HTML file"""
    start_time = time.time()
    if model_name != "Gemini 2.5 Flash (Google AI)" and not api_key.strip():
        return None, "❌ Error: Please provide an API key for this model.", 0

    document_content = get_document_content(text_input, url_input, file_input)
    if not document_content:
        return None, "❌ Error: Please provide a document (text, URL or file).", 0

    try:
        # Create LLM instance
        llm = create_llm_instance(model_name, api_key)

        # Read prompt template
        with open("creation_educational_html_from_any_document_18082025.txt", "r", encoding="utf-8") as f:
            prompt_template = f.read()

        # Replace variables
        model_config = MODELS[model_name]
        prompt = prompt_template.format(
            model_name=model_config["model_name"],
            provider_name=model_config["provider"],
            document=document_content
        )

        # Generate content
        message = HumanMessage(content=prompt)
        response = llm.invoke([message])
        html_content = response.content

        # Clean any code tags from models
        html_content = html_content.replace("```html", "")
        html_content = html_content.replace("```", "")

        # Calculate generation time
        generation_time = time.time() - start_time

        # Save HTML file
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        filename = f"educational_document_{timestamp}.html"
        with open(filename, "w", encoding="utf-8") as f:
            f.write(html_content)

        success_message = f"✅ HTML file generated successfully in {generation_time:.2f} seconds!"
        return filename, success_message, generation_time

    except Exception as e:
        error_message = f"❌ Error during generation: {str(e)}"
        return None, error_message, 0

def reset_form():
    """Reset the form to zero"""
    return (
        "Gemini 2.5 Flash (Google AI)",  # model_name
        "",  # api_key
        "",  # text_input
        "",  # url_input
        None,  # file_input
        "",  # status_message
        None,  # html_file
        ""   # html_preview
    )

def update_api_info(model_name):
    """Update API information based on selected model"""
    if model_name == "Gemini 2.5 Flash (Google AI)":
        return gr.update(
            label="API Key (optional)",
            placeholder="Free API available until exhausted, or use your own key",
            info="💡 A free API is already configured for this model. You can use your own key if you wish."
        )
    else:
        return gr.update(
            label="API Key (required)",
            placeholder="Enter your API key",
            info="🔑 API key required for this model"
        )

# Gradio Interface (Apple-like)
with gr.Blocks(
    title="EduHTML Creator - Educational HTML Content Generator",
    theme=gr.themes.Soft(),
    css="style.css",
    js="script.js"
) as app:

    # Header hero (black, full-width look within container)
    gr.HTML("""
    <div class="header" role="banner">
        <div class="header-inner">
            <h1>🎓 EduHTML Creator</h1>
            <p>
                Transform any document into interactive educational HTML content, with a premium Apple-inspired design.
                Document fidelity, clear structure, interactivity, and highlighting of key information.
            </p>
        </div>
    </div>
    """)

    with gr.Column(elem_classes=["main-container"]):
        # Model Configuration Section
        gr.HTML("<div class='section'>")
        model_dropdown = gr.Dropdown(
            choices=list(MODELS.keys()),
            value="Gemini 2.5 Flash (Google AI)",
            label="LLM Model",
            info="Select the model to use for generation"
        )

        api_input = gr.Textbox(
            label="API Key (optional)",
            placeholder="Free API (Gemini Flash) available. You can enter your own key.",
            info="For OpenAI/Anthropic, a key is required.",
            type="password"
        )
        gr.HTML("</div>")

        # Document Source Section with tabs
        gr.HTML("<div class='section alt'>")
        gr.HTML("<h3>Document Source</h3>")
        
        with gr.Tabs():
            with gr.TabItem("📝 Text"):
                text_input = gr.Textbox(
                    label="Copied/pasted text",
                    placeholder="Paste your text here...",
                    lines=4
                )
            
            with gr.TabItem("🌐 URL"):
                url_input = gr.Textbox(
                    label="Web Link",
                    placeholder="https://example.com/article"
                )
            
            with gr.TabItem("📁 File"):
                file_input = gr.File(
                    label="File",
                    file_types=[".pdf", ".txt", ".docx", ".xlsx", ".xls", ".pptx"]
                )
        
        gr.HTML("</div>")

        # Action buttons
        with gr.Row():
            submit_btn = gr.Button("Generate HTML", variant="primary", elem_classes=["apple-button"])
            reset_btn = gr.Button("Reset", elem_classes=["reset-button"])

        # Results Section
        status_output = gr.HTML(label="Status")
        gr.HTML("<div class='section preview-card'>")
        gr.HTML("<div class='preview-header'><div class='preview-dot' aria-hidden='true'></div><div>Preview</div></div>")
        html_preview = gr.HTML(label="Preview", visible=False, elem_id="html-preview", elem_classes=["preview-body"])
        html_file_output = gr.File(label="Downloadable HTML file", visible=False)
        gr.HTML("</div>")

        # Footer (black)
        gr.HTML("""
        <div class="footer" role="contentinfo">
            <div class="footer-inner">
                <span>Apple-inspired design • High contrasts • Smooth interactions</span>
            </div>
        </div>
        """)

        # Events
        model_dropdown.change(
            fn=update_api_info,
            inputs=[model_dropdown],
            outputs=[api_input]
        )

        submit_btn.click(
            fn=generate_html,
            inputs=[model_dropdown, api_input, text_input, url_input, file_input],
            outputs=[html_file_output, status_output, gr.State()]
        ).then(
            fn=lambda file, status, _: (
                gr.update(visible=file is not None),
                status,
                gr.update(visible=file is not None, value=(open(file, 'r', encoding='utf-8').read() if file else ""))
            ),
            inputs=[html_file_output, status_output, gr.State()],
            outputs=[html_file_output, status_output, html_preview]
        )

        reset_btn.click(
            fn=reset_form,
            outputs=[model_dropdown, api_input, text_input, url_input, file_input, status_output, html_file_output, html_preview]
        )

if __name__ == "__main__":
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True
    )