File size: 7,478 Bytes
87b3a05
 
 
 
 
efa5b45
 
 
 
 
f1ed0fa
 
 
87b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efa5b45
 
 
 
 
 
 
 
 
 
87b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb3cb93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87b3a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90319ee
87b3a05
 
 
 
 
e8fdc19
bb3cb93
 
 
 
87b3a05
 
 
 
e8fdc19
 
 
480761d
e8fdc19
87b3a05
e8fdc19
1ea79e0
99a65c8
a736c37
78cb63c
 
 
 
 
87b3a05
0364dd7
9e081f0
87b3a05
 
0e12e21
87b3a05
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import gradio as gr
import ast
import requests

import logging
from rembg import new_session
from cutter import remove, make_label
from utils import *

API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe"
API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows"

from theme_dropdown import create_theme_dropdown  # noqa: F401

dropdown, js = create_theme_dropdown()

models = [
    {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"},
    {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"},
    {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"},
    {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"},
    {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"},
    {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"},
    {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"},
    {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"},
]   


####  REM-BG
remove_bg_models = {
    "TracerUniversalB7": "TracerUniversalB7",
    "U2NET": "u2net",
    "U2NET Human Seg": "u2net_human_seg",
    "U2NET Cloth Seg": "u2net_cloth_seg"
}
###########

text_gen = gr.Interface.load("spaces/daspartho/prompt-extend")

current_model = models[0]

models2 = []
for model in models:
    model_url = f"models/{model['url']}"
    loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
    models2.append(loaded_model)

def text_it(inputs, text_gen=text_gen):
    return text_gen(inputs)

def flip_text(x):
    return x[::-1]

def send_it(inputs, model_choice):
    proc = models2[model_choice]
    return proc(inputs)


def flip_image(x):
    return np.fliplr(x)


def set_model(current_model_index):
    global current_model
    current_model = models[current_model_index]
    return gr.update(value=f"{current_model['name']}")

#define inference function
#First: Get initial images for the grid display 
def get_initial_images():
  response = requests.post(API_URL_INITIAL, json={
            "data": []
            }).json()
  #data = response["data"][0]['data'][0][0][:-1]
  response_dict = response['data'][0]
  return response_dict  #, [resp[0][:-1] for resp in response["data"][0]["data"]]

#Second: Process response dictionary to get imges as hyperlinked image tags
def process_response(response_dict):
  return [resp[0][:-1] for resp in response_dict["data"]]

response_dict = get_initial_images()
initial = process_response(response_dict)
initial_imgs  = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);">\n' + "\n".join(initial[:-1])

#Third: Load more images for the grid
def get_next10_images(response_dict, row_count):
    row_count = int(row_count)
    #print("(1)",type(response_dict))
    #Convert the string to a dictionary
    if isinstance(response_dict, dict) == False :
        response_dict = ast.literal_eval(response_dict)
    response = requests.post(API_URL_NEXT10, json={
              "data": [response_dict, row_count ] #len(initial)-1
               }).json()
    row_count+=10
    response_dict = response['data'][0]
    #print("(2)",type(response))
    #print("(3)",type(response['data'][0]))
    next_set  = [resp[0][:-1] for resp in response_dict["data"]]
    next_set_images = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); ">\n' + "\n".join(next_set[:-1])
    return response_dict, row_count, next_set_images  #response['data'][0]


with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan:
    gr.Markdown("AI CONTENT TOOLS.")
                    
    with gr.Tab("T-to-I"):
        
    ##model = ("stabilityai/stable-diffusion-2-1")
         model_name1 = gr.Dropdown(
                label="Choose Model",
                choices=[m["name"] for m in models],
                type="index",
                value=current_model["name"],
                interactive=True,
         )
         input_text = gr.Textbox(label="Prompt idea",)

        ##  run = gr.Button("Generate Images")
         with gr.Row():
             see_prompts = gr.Button("Generate Prompts")
             run = gr.Button("Generate Images", variant="primary")
        
         with gr.Row():
             magic1 = gr.Textbox(label="Generated Prompt", lines=2)
             output1 = gr.Image(label="")
          
             
         with gr.Row():    
             magic2 = gr.Textbox(label="Generated Prompt", lines=2)
             output2 = gr.Image(label="")

            
         run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
         run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
         see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
         see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
        
    model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,])
        
    with gr.Tab("AI Library"):
         #Using Gradio Demos as API - This is Hot!
#get_next10_images(response_dict=response_dict, row_count=9)
#position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);

#Defining the Blocks layout
   # with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo:
         gr.HTML(value="top of page", elem_id="top",visible=False)
         gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
            <div
            style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
            "
            >
            <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            Using Gradio API - 2 </h1><br></div>
            <div><h4 style="font-weight: 500; margin-bottom: 7px; margin-top: 5px;">
            Stream <a href="https://github.com/playgroundai/liked_images" target="_blank">PlaygroundAI Images</a> ina beautiful grid</h4><br>
            </div>""")
    with gr.Tab("AI Library"):
    #with gr.Tab(): #(elem_id = "col-container"):
          #gr.Column(): #(elem_id = "col-container"):
             b1 = gr.Button("Load More Images").style(full_width=False)
             df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict)
             row_count = gr.Number(visible=False, value=19 )
             img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search", 
                                 value=initial_imgs ) #initial[:-1] )
      

    b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" ) 
            

    with gr.Tab("Rem_BG"):
        with gr.Row():
            text_input = gr.Textbox()                      ##   Diffuser
            image_output = gr.Image()
        image_button = gr.Button("Flip")



   # text_button.click(flip_text, inputs=text_input, outputs=text_output)
   # image_button.click(flip_image, inputs=image_input, outputs=image_output)
pan.queue(concurrency_count=200)
pan.launch(inline=True, show_api=True, max_threads=400)