File size: 7,173 Bytes
87b3a05 f1ed0fa 87b3a05 bb3cb93 87b3a05 90319ee 87b3a05 e8fdc19 bb3cb93 87b3a05 e8fdc19 480761d e8fdc19 87b3a05 e8fdc19 1ea79e0 99a65c8 a736c37 78cb63c 87b3a05 0364dd7 9e081f0 87b3a05 0e12e21 87b3a05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import numpy as np
import gradio as gr
import ast
import requests
API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe"
API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows"
from theme_dropdown import create_theme_dropdown # noqa: F401
dropdown, js = create_theme_dropdown()
models = [
{"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"},
{"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"},
{"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"},
{"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"},
{"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"},
{"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"},
{"name": "Robo Diffusion", "url": "nousr/robo-diffusion"},
{"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"},
]
text_gen = gr.Interface.load("spaces/daspartho/prompt-extend")
current_model = models[0]
models2 = []
for model in models:
model_url = f"models/{model['url']}"
loaded_model = gr.Interface.load(model_url, live=True, preprocess=True)
models2.append(loaded_model)
def text_it(inputs, text_gen=text_gen):
return text_gen(inputs)
def flip_text(x):
return x[::-1]
def send_it(inputs, model_choice):
proc = models2[model_choice]
return proc(inputs)
def flip_image(x):
return np.fliplr(x)
def set_model(current_model_index):
global current_model
current_model = models[current_model_index]
return gr.update(value=f"{current_model['name']}")
#define inference function
#First: Get initial images for the grid display
def get_initial_images():
response = requests.post(API_URL_INITIAL, json={
"data": []
}).json()
#data = response["data"][0]['data'][0][0][:-1]
response_dict = response['data'][0]
return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]]
#Second: Process response dictionary to get imges as hyperlinked image tags
def process_response(response_dict):
return [resp[0][:-1] for resp in response_dict["data"]]
response_dict = get_initial_images()
initial = process_response(response_dict)
initial_imgs = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);">\n' + "\n".join(initial[:-1])
#Third: Load more images for the grid
def get_next10_images(response_dict, row_count):
row_count = int(row_count)
#print("(1)",type(response_dict))
#Convert the string to a dictionary
if isinstance(response_dict, dict) == False :
response_dict = ast.literal_eval(response_dict)
response = requests.post(API_URL_NEXT10, json={
"data": [response_dict, row_count ] #len(initial)-1
}).json()
row_count+=10
response_dict = response['data'][0]
#print("(2)",type(response))
#print("(3)",type(response['data'][0]))
next_set = [resp[0][:-1] for resp in response_dict["data"]]
next_set_images = '<div style="display: grid; grid-template-columns: repeat(3, 1fr); grid-template-rows: repeat(3, 1fr); grid-gap: 0; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); ">\n' + "\n".join(next_set[:-1])
return response_dict, row_count, next_set_images #response['data'][0]
with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan:
gr.Markdown("AI CONTENT TOOLS.")
with gr.Tab("T-to-I"):
##model = ("stabilityai/stable-diffusion-2-1")
model_name1 = gr.Dropdown(
label="Choose Model",
choices=[m["name"] for m in models],
type="index",
value=current_model["name"],
interactive=True,
)
input_text = gr.Textbox(label="Prompt idea",)
## run = gr.Button("Generate Images")
with gr.Row():
see_prompts = gr.Button("Generate Prompts")
run = gr.Button("Generate Images", variant="primary")
with gr.Row():
magic1 = gr.Textbox(label="Generated Prompt", lines=2)
output1 = gr.Image(label="")
with gr.Row():
magic2 = gr.Textbox(label="Generated Prompt", lines=2)
output2 = gr.Image(label="")
run.click(send_it, inputs=[magic1, model_name1], outputs=[output1])
run.click(send_it, inputs=[magic2, model_name1], outputs=[output2])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic1])
see_prompts.click(text_it, inputs=[input_text], outputs=[magic2])
model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,])
with gr.Tab("AI Library"):
#Using Gradio Demos as API - This is Hot!
#get_next10_images(response_dict=response_dict, row_count=9)
#position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2);
#Defining the Blocks layout
# with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo:
gr.HTML(value="top of page", elem_id="top",visible=False)
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Using Gradio API - 2 </h1><br></div>
<div><h4 style="font-weight: 500; margin-bottom: 7px; margin-top: 5px;">
Stream <a href="https://github.com/playgroundai/liked_images" target="_blank">PlaygroundAI Images</a> ina beautiful grid</h4><br>
</div>""")
with gr.Tab("AI Library"):
#with gr.Tab(): #(elem_id = "col-container"):
#gr.Column(): #(elem_id = "col-container"):
b1 = gr.Button("Load More Images").style(full_width=False)
df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict)
row_count = gr.Number(visible=False, value=19 )
img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search",
value=initial_imgs ) #initial[:-1] )
b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" )
with gr.Tab("Rem_BG"):
with gr.Row():
text_input = gr.Textbox() ## Diffuser
image_output = gr.Image()
image_button = gr.Button("Flip")
# text_button.click(flip_text, inputs=text_input, outputs=text_output)
# image_button.click(flip_image, inputs=image_input, outputs=image_output)
pan.queue(concurrency_count=200)
pan.launch(inline=True, show_api=True, max_threads=400)
|