|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from tqdm.auto import tqdm |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from latentsync.models.syncnet import SyncNet |
|
from latentsync.data.syncnet_dataset import SyncNetDataset |
|
from diffusers import AutoencoderKL |
|
from omegaconf import OmegaConf |
|
from accelerate.utils import set_seed |
|
|
|
|
|
def main(config): |
|
set_seed(config.run.seed) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if config.data.latent_space: |
|
vae = AutoencoderKL.from_pretrained( |
|
"runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16 |
|
) |
|
vae.requires_grad_(False) |
|
vae.to(device) |
|
|
|
|
|
dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config) |
|
|
|
test_dataloader = torch.utils.data.DataLoader( |
|
dataset, |
|
batch_size=config.data.batch_size, |
|
shuffle=False, |
|
num_workers=config.data.num_workers, |
|
drop_last=False, |
|
worker_init_fn=dataset.worker_init_fn, |
|
) |
|
|
|
|
|
syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device) |
|
|
|
print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}") |
|
checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device) |
|
|
|
syncnet.load_state_dict(checkpoint["state_dict"]) |
|
syncnet.to(dtype=torch.float16) |
|
syncnet.requires_grad_(False) |
|
syncnet.eval() |
|
|
|
global_step = 0 |
|
num_val_batches = config.data.num_val_samples // config.data.batch_size |
|
progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy") |
|
|
|
num_correct_preds = 0 |
|
num_total_preds = 0 |
|
|
|
while True: |
|
for step, batch in enumerate(test_dataloader): |
|
|
|
|
|
frames = batch["frames"].to(device, dtype=torch.float16) |
|
audio_samples = batch["audio_samples"].to(device, dtype=torch.float16) |
|
y = batch["y"].to(device, dtype=torch.float16).squeeze(1) |
|
|
|
if config.data.latent_space: |
|
frames = rearrange(frames, "b f c h w -> (b f) c h w") |
|
|
|
with torch.no_grad(): |
|
frames = vae.encode(frames).latent_dist.sample() * 0.18215 |
|
|
|
frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames) |
|
else: |
|
frames = rearrange(frames, "b f c h w -> b (f c) h w") |
|
|
|
if config.data.lower_half: |
|
height = frames.shape[2] |
|
frames = frames[:, :, height // 2 :, :] |
|
|
|
with torch.no_grad(): |
|
vision_embeds, audio_embeds = syncnet(frames, audio_samples) |
|
|
|
sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds) |
|
|
|
preds = (sims > 0.5).to(dtype=torch.float16) |
|
num_correct_preds += (preds == y).sum().item() |
|
num_total_preds += len(sims) |
|
|
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
if global_step >= num_val_batches: |
|
progress_bar.close() |
|
print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%") |
|
return |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator") |
|
|
|
parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml") |
|
args = parser.parse_args() |
|
|
|
|
|
config = OmegaConf.load(args.config_path) |
|
|
|
main(config) |
|
|