|
|
|
|
|
import torch as torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from torch.nn import init |
|
import math |
|
import torch.utils.model_zoo as model_zoo |
|
|
|
model_urls = { |
|
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', |
|
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', |
|
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', |
|
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', |
|
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', |
|
} |
|
|
|
|
|
class HyperNet(nn.Module): |
|
""" |
|
Hyper network for learning perceptual rules. |
|
|
|
Args: |
|
lda_out_channels: local distortion aware module output size. |
|
hyper_in_channels: input feature channels for hyper network. |
|
target_in_size: input vector size for target network. |
|
target_fc(i)_size: fully connection layer size of target network. |
|
feature_size: input feature map width/height for hyper network. |
|
|
|
Note: |
|
For size match, input args must satisfy: 'target_fc(i)_size * target_fc(i+1)_size' is divisible by 'feature_size ^ 2'. |
|
|
|
""" |
|
def __init__(self, lda_out_channels, hyper_in_channels, target_in_size, target_fc1_size, target_fc2_size, target_fc3_size, target_fc4_size, feature_size): |
|
super(HyperNet, self).__init__() |
|
|
|
self.hyperInChn = hyper_in_channels |
|
self.target_in_size = target_in_size |
|
self.f1 = target_fc1_size |
|
self.f2 = target_fc2_size |
|
self.f3 = target_fc3_size |
|
self.f4 = target_fc4_size |
|
self.feature_size = feature_size |
|
|
|
self.res = resnet50_backbone(lda_out_channels, target_in_size, pretrained=True) |
|
|
|
self.pool = nn.AdaptiveAvgPool2d((1, 1)) |
|
|
|
|
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(2048, 1024, 1, padding=(0, 0)), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(1024, 512, 1, padding=(0, 0)), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(512, self.hyperInChn, 1, padding=(0, 0)), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
self.fc1w_conv = nn.Conv2d(self.hyperInChn, int(self.target_in_size * self.f1 / feature_size ** 2), 3, padding=(1, 1)) |
|
self.fc1b_fc = nn.Linear(self.hyperInChn, self.f1) |
|
|
|
self.fc2w_conv = nn.Conv2d(self.hyperInChn, int(self.f1 * self.f2 / feature_size ** 2), 3, padding=(1, 1)) |
|
self.fc2b_fc = nn.Linear(self.hyperInChn, self.f2) |
|
|
|
self.fc3w_conv = nn.Conv2d(self.hyperInChn, int(self.f2 * self.f3 / feature_size ** 2), 3, padding=(1, 1)) |
|
self.fc3b_fc = nn.Linear(self.hyperInChn, self.f3) |
|
|
|
self.fc4w_conv = nn.Conv2d(self.hyperInChn, int(self.f3 * self.f4 / feature_size ** 2), 3, padding=(1, 1)) |
|
self.fc4b_fc = nn.Linear(self.hyperInChn, self.f4) |
|
|
|
self.fc5w_fc = nn.Linear(self.hyperInChn, self.f4) |
|
self.fc5b_fc = nn.Linear(self.hyperInChn, 1) |
|
|
|
|
|
for i, m_name in enumerate(self._modules): |
|
if i > 2: |
|
nn.init.kaiming_normal_(self._modules[m_name].weight.data) |
|
|
|
def forward(self, img): |
|
feature_size = self.feature_size |
|
|
|
res_out = self.res(img) |
|
|
|
|
|
target_in_vec = res_out['target_in_vec'].reshape(-1, self.target_in_size, 1, 1) |
|
|
|
|
|
hyper_in_feat = self.conv1(res_out['hyper_in_feat']).reshape(-1, self.hyperInChn, feature_size, feature_size) |
|
|
|
|
|
target_fc1w = self.fc1w_conv(hyper_in_feat).reshape(-1, self.f1, self.target_in_size, 1, 1) |
|
target_fc1b = self.fc1b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f1) |
|
|
|
target_fc2w = self.fc2w_conv(hyper_in_feat).reshape(-1, self.f2, self.f1, 1, 1) |
|
target_fc2b = self.fc2b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f2) |
|
|
|
target_fc3w = self.fc3w_conv(hyper_in_feat).reshape(-1, self.f3, self.f2, 1, 1) |
|
target_fc3b = self.fc3b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f3) |
|
|
|
target_fc4w = self.fc4w_conv(hyper_in_feat).reshape(-1, self.f4, self.f3, 1, 1) |
|
target_fc4b = self.fc4b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, self.f4) |
|
|
|
target_fc5w = self.fc5w_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1, self.f4, 1, 1) |
|
target_fc5b = self.fc5b_fc(self.pool(hyper_in_feat).squeeze()).reshape(-1, 1) |
|
|
|
out = {} |
|
out['target_in_vec'] = target_in_vec |
|
out['target_fc1w'] = target_fc1w |
|
out['target_fc1b'] = target_fc1b |
|
out['target_fc2w'] = target_fc2w |
|
out['target_fc2b'] = target_fc2b |
|
out['target_fc3w'] = target_fc3w |
|
out['target_fc3b'] = target_fc3b |
|
out['target_fc4w'] = target_fc4w |
|
out['target_fc4b'] = target_fc4b |
|
out['target_fc5w'] = target_fc5w |
|
out['target_fc5b'] = target_fc5b |
|
|
|
return out |
|
|
|
|
|
class TargetNet(nn.Module): |
|
""" |
|
Target network for quality prediction. |
|
""" |
|
def __init__(self, paras): |
|
super(TargetNet, self).__init__() |
|
self.l1 = nn.Sequential( |
|
TargetFC(paras['target_fc1w'], paras['target_fc1b']), |
|
nn.Sigmoid(), |
|
) |
|
self.l2 = nn.Sequential( |
|
TargetFC(paras['target_fc2w'], paras['target_fc2b']), |
|
nn.Sigmoid(), |
|
) |
|
|
|
self.l3 = nn.Sequential( |
|
TargetFC(paras['target_fc3w'], paras['target_fc3b']), |
|
nn.Sigmoid(), |
|
) |
|
|
|
self.l4 = nn.Sequential( |
|
TargetFC(paras['target_fc4w'], paras['target_fc4b']), |
|
nn.Sigmoid(), |
|
TargetFC(paras['target_fc5w'], paras['target_fc5b']), |
|
) |
|
|
|
def forward(self, x): |
|
q = self.l1(x) |
|
|
|
q = self.l2(q) |
|
q = self.l3(q) |
|
q = self.l4(q).squeeze() |
|
return q |
|
|
|
|
|
class TargetFC(nn.Module): |
|
""" |
|
Fully connection operations for target net |
|
|
|
Note: |
|
Weights & biases are different for different images in a batch, |
|
thus here we use group convolution for calculating images in a batch with individual weights & biases. |
|
""" |
|
def __init__(self, weight, bias): |
|
super(TargetFC, self).__init__() |
|
self.weight = weight |
|
self.bias = bias |
|
|
|
def forward(self, input_): |
|
|
|
input_re = input_.reshape(-1, input_.shape[0] * input_.shape[1], input_.shape[2], input_.shape[3]) |
|
weight_re = self.weight.reshape(self.weight.shape[0] * self.weight.shape[1], self.weight.shape[2], self.weight.shape[3], self.weight.shape[4]) |
|
bias_re = self.bias.reshape(self.bias.shape[0] * self.bias.shape[1]) |
|
out = F.conv2d(input=input_re, weight=weight_re, bias=bias_re, groups=self.weight.shape[0]) |
|
|
|
return out.reshape(input_.shape[0], self.weight.shape[1], input_.shape[2], input_.shape[3]) |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, |
|
padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * 4) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNetBackbone(nn.Module): |
|
|
|
def __init__(self, lda_out_channels, in_chn, block, layers, num_classes=1000): |
|
super(ResNetBackbone, self).__init__() |
|
self.inplanes = 64 |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
|
|
|
|
self.lda1_pool = nn.Sequential( |
|
nn.Conv2d(256, 16, kernel_size=1, stride=1, padding=0, bias=False), |
|
nn.AvgPool2d(7, stride=7), |
|
) |
|
self.lda1_fc = nn.Linear(16 * 64, lda_out_channels) |
|
|
|
self.lda2_pool = nn.Sequential( |
|
nn.Conv2d(512, 32, kernel_size=1, stride=1, padding=0, bias=False), |
|
nn.AvgPool2d(7, stride=7), |
|
) |
|
self.lda2_fc = nn.Linear(32 * 16, lda_out_channels) |
|
|
|
self.lda3_pool = nn.Sequential( |
|
nn.Conv2d(1024, 64, kernel_size=1, stride=1, padding=0, bias=False), |
|
nn.AvgPool2d(7, stride=7), |
|
) |
|
self.lda3_fc = nn.Linear(64 * 4, lda_out_channels) |
|
|
|
self.lda4_pool = nn.AvgPool2d(7, stride=7) |
|
self.lda4_fc = nn.Linear(2048, in_chn - lda_out_channels * 3) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
m.weight.data.normal_(0, math.sqrt(2. / n)) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
m.weight.data.fill_(1) |
|
m.bias.data.zero_() |
|
|
|
|
|
nn.init.kaiming_normal_(self.lda1_pool._modules['0'].weight.data) |
|
nn.init.kaiming_normal_(self.lda2_pool._modules['0'].weight.data) |
|
nn.init.kaiming_normal_(self.lda3_pool._modules['0'].weight.data) |
|
nn.init.kaiming_normal_(self.lda1_fc.weight.data) |
|
nn.init.kaiming_normal_(self.lda2_fc.weight.data) |
|
nn.init.kaiming_normal_(self.lda3_fc.weight.data) |
|
nn.init.kaiming_normal_(self.lda4_fc.weight.data) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, planes * block.expansion, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
x = self.layer1(x) |
|
|
|
|
|
lda_1 = self.lda1_fc(self.lda1_pool(x).reshape(x.size(0), -1)) |
|
x = self.layer2(x) |
|
lda_2 = self.lda2_fc(self.lda2_pool(x).reshape(x.size(0), -1)) |
|
x = self.layer3(x) |
|
lda_3 = self.lda3_fc(self.lda3_pool(x).reshape(x.size(0), -1)) |
|
x = self.layer4(x) |
|
lda_4 = self.lda4_fc(self.lda4_pool(x).reshape(x.size(0), -1)) |
|
|
|
vec = torch.cat((lda_1, lda_2, lda_3, lda_4), 1) |
|
|
|
out = {} |
|
out['hyper_in_feat'] = x |
|
out['target_in_vec'] = vec |
|
|
|
return out |
|
|
|
|
|
def resnet50_backbone(lda_out_channels, in_chn, pretrained=False, **kwargs): |
|
"""Constructs a ResNet-50 model_hyper. |
|
|
|
Args: |
|
pretrained (bool): If True, returns a model_hyper pre-trained on ImageNet |
|
""" |
|
model = ResNetBackbone(lda_out_channels, in_chn, Bottleneck, [3, 4, 6, 3], **kwargs) |
|
if pretrained: |
|
save_model = model_zoo.load_url(model_urls['resnet50']) |
|
model_dict = model.state_dict() |
|
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()} |
|
model_dict.update(state_dict) |
|
model.load_state_dict(model_dict) |
|
else: |
|
model.apply(weights_init_xavier) |
|
return model |
|
|
|
|
|
def weights_init_xavier(m): |
|
classname = m.__class__.__name__ |
|
|
|
|
|
if classname.find('Conv') != -1: |
|
init.kaiming_normal_(m.weight.data) |
|
elif classname.find('Linear') != -1: |
|
init.kaiming_normal_(m.weight.data) |
|
elif classname.find('BatchNorm2d') != -1: |
|
init.uniform_(m.weight.data, 1.0, 0.02) |
|
init.constant_(m.bias.data, 0.0) |
|
|