|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from latentsync.utils.util import read_video, write_video |
|
from latentsync.utils.image_processor import ImageProcessor |
|
import torch |
|
from einops import rearrange |
|
import os |
|
import tqdm |
|
import subprocess |
|
from multiprocessing import Process |
|
import shutil |
|
|
|
paths = [] |
|
|
|
|
|
def gather_video_paths(input_dir, output_dir): |
|
for video in sorted(os.listdir(input_dir)): |
|
if video.endswith(".mp4"): |
|
video_input = os.path.join(input_dir, video) |
|
video_output = os.path.join(output_dir, video) |
|
if os.path.isfile(video_output): |
|
continue |
|
paths.append((video_input, video_output)) |
|
elif os.path.isdir(os.path.join(input_dir, video)): |
|
gather_video_paths(os.path.join(input_dir, video), os.path.join(output_dir, video)) |
|
|
|
|
|
class FaceDetector: |
|
def __init__(self, resolution: int = 512, device: str = "cpu"): |
|
self.image_processor = ImageProcessor(resolution, "fix_mask", device) |
|
|
|
def affine_transform_video(self, video_path): |
|
video_frames = read_video(video_path, change_fps=False) |
|
results = [] |
|
for frame in video_frames: |
|
frame, _, _ = self.image_processor.affine_transform(frame) |
|
results.append(frame) |
|
results = torch.stack(results) |
|
|
|
results = rearrange(results, "f c h w -> f h w c").numpy() |
|
return results |
|
|
|
def close(self): |
|
self.image_processor.close() |
|
|
|
|
|
def combine_video_audio(video_frames, video_input_path, video_output_path, process_temp_dir): |
|
video_name = os.path.basename(video_input_path)[:-4] |
|
audio_temp = os.path.join(process_temp_dir, f"{video_name}_temp.wav") |
|
video_temp = os.path.join(process_temp_dir, f"{video_name}_temp.mp4") |
|
|
|
write_video(video_temp, video_frames, fps=25) |
|
|
|
command = f"ffmpeg -y -loglevel error -i {video_input_path} -q:a 0 -map a {audio_temp}" |
|
subprocess.run(command, shell=True) |
|
|
|
os.makedirs(os.path.dirname(video_output_path), exist_ok=True) |
|
command = f"ffmpeg -y -loglevel error -i {video_temp} -i {audio_temp} -c:v libx264 -c:a aac -map 0:v -map 1:a -q:v 0 -q:a 0 {video_output_path}" |
|
subprocess.run(command, shell=True) |
|
|
|
os.remove(audio_temp) |
|
os.remove(video_temp) |
|
|
|
|
|
def func(paths, process_temp_dir, device_id, resolution): |
|
os.makedirs(process_temp_dir, exist_ok=True) |
|
face_detector = FaceDetector(resolution, f"cuda:{device_id}") |
|
|
|
for video_input, video_output in paths: |
|
if os.path.isfile(video_output): |
|
continue |
|
try: |
|
video_frames = face_detector.affine_transform_video(video_input) |
|
except Exception as e: |
|
print(f"Exception: {e} - {video_input}") |
|
continue |
|
|
|
os.makedirs(os.path.dirname(video_output), exist_ok=True) |
|
combine_video_audio(video_frames, video_input, video_output, process_temp_dir) |
|
print(f"Saved: {video_output}") |
|
|
|
face_detector.close() |
|
|
|
|
|
def split(a, n): |
|
k, m = divmod(len(a), n) |
|
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)) |
|
|
|
|
|
def affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers): |
|
print(f"Recursively gathering video paths of {input_dir} ...") |
|
gather_video_paths(input_dir, output_dir) |
|
num_devices = torch.cuda.device_count() |
|
if num_devices == 0: |
|
raise RuntimeError("No GPUs found") |
|
|
|
if os.path.exists(temp_dir): |
|
shutil.rmtree(temp_dir) |
|
os.makedirs(temp_dir, exist_ok=True) |
|
|
|
split_paths = list(split(paths, num_workers * num_devices)) |
|
|
|
processes = [] |
|
|
|
for i in range(num_devices): |
|
for j in range(num_workers): |
|
process_index = i * num_workers + j |
|
process = Process( |
|
target=func, args=(split_paths[process_index], os.path.join(temp_dir, f"process_{i}"), i, resolution) |
|
) |
|
process.start() |
|
processes.append(process) |
|
|
|
for process in processes: |
|
process.join() |
|
|
|
|
|
if __name__ == "__main__": |
|
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/resampled/train" |
|
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/avatars/affine_transformed/train" |
|
temp_dir = "temp" |
|
resolution = 256 |
|
num_workers = 10 |
|
|
|
affine_transform_multi_gpus(input_dir, output_dir, temp_dir, resolution, num_workers) |
|
|