|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tqdm |
|
from eval.syncnet import SyncNetEval |
|
from eval.syncnet_detect import SyncNetDetector |
|
from eval.eval_sync_conf import syncnet_eval |
|
import torch |
|
import subprocess |
|
import shutil |
|
from multiprocessing import Process |
|
|
|
paths = [] |
|
|
|
|
|
def gather_paths(input_dir, output_dir): |
|
|
|
|
|
for video in tqdm.tqdm(sorted(os.listdir(input_dir))): |
|
if video.endswith(".mp4"): |
|
video_input = os.path.join(input_dir, video) |
|
video_output = os.path.join(output_dir, video) |
|
if os.path.isfile(video_output): |
|
continue |
|
paths.append((video_input, video_output)) |
|
elif os.path.isdir(os.path.join(input_dir, video)): |
|
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video)) |
|
|
|
|
|
def adjust_offset(video_input: str, video_output: str, av_offset: int, fps: int = 25): |
|
command = f"ffmpeg -loglevel error -y -i {video_input} -itsoffset {av_offset/fps} -i {video_input} -map 0:v -map 1:a -c copy -q:v 0 -q:a 0 {video_output}" |
|
subprocess.run(command, shell=True) |
|
|
|
|
|
def func(sync_conf_threshold, paths, device_id, process_temp_dir): |
|
os.makedirs(process_temp_dir, exist_ok=True) |
|
device = f"cuda:{device_id}" |
|
|
|
syncnet = SyncNetEval(device=device) |
|
syncnet.loadParameters("checkpoints/auxiliary/syncnet_v2.model") |
|
|
|
detect_results_dir = os.path.join(process_temp_dir, "detect_results") |
|
syncnet_eval_results_dir = os.path.join(process_temp_dir, "syncnet_eval_results") |
|
|
|
syncnet_detector = SyncNetDetector(device=device, detect_results_dir=detect_results_dir) |
|
|
|
for video_input, video_output in paths: |
|
try: |
|
av_offset, conf = syncnet_eval( |
|
syncnet, syncnet_detector, video_input, syncnet_eval_results_dir, detect_results_dir |
|
) |
|
if conf >= sync_conf_threshold and abs(av_offset) <= 6: |
|
os.makedirs(os.path.dirname(video_output), exist_ok=True) |
|
if av_offset == 0: |
|
shutil.copy(video_input, video_output) |
|
else: |
|
adjust_offset(video_input, video_output, av_offset) |
|
except Exception as e: |
|
print(e) |
|
|
|
|
|
def split(a, n): |
|
k, m = divmod(len(a), n) |
|
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)) |
|
|
|
|
|
def sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold): |
|
gather_paths(input_dir, output_dir) |
|
num_devices = torch.cuda.device_count() |
|
if num_devices == 0: |
|
raise RuntimeError("No GPUs found") |
|
split_paths = list(split(paths, num_workers * num_devices)) |
|
processes = [] |
|
|
|
for i in range(num_devices): |
|
for j in range(num_workers): |
|
process_index = i * num_workers + j |
|
process = Process( |
|
target=func, |
|
args=( |
|
sync_conf_threshold, |
|
split_paths[process_index], |
|
i, |
|
os.path.join(temp_dir, f"process_{process_index}"), |
|
), |
|
) |
|
process.start() |
|
processes.append(process) |
|
|
|
for process in processes: |
|
process.join() |
|
|
|
|
|
if __name__ == "__main__": |
|
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/affine_transformed" |
|
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/temp" |
|
temp_dir = "temp" |
|
num_workers = 20 |
|
sync_conf_threshold = 3 |
|
|
|
sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold) |
|
|