|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import math |
|
import argparse |
|
import shutil |
|
import datetime |
|
import logging |
|
from omegaconf import OmegaConf |
|
|
|
from tqdm.auto import tqdm |
|
from einops import rearrange |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.distributed as dist |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
|
|
import diffusers |
|
from diffusers import AutoencoderKL, DDIMScheduler |
|
from diffusers.utils.logging import get_logger |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from accelerate.utils import set_seed |
|
|
|
from latentsync.data.unet_dataset import UNetDataset |
|
from latentsync.models.unet import UNet3DConditionModel |
|
from latentsync.models.syncnet import SyncNet |
|
from latentsync.pipelines.lipsync_pipeline import LipsyncPipeline |
|
from latentsync.utils.util import ( |
|
init_dist, |
|
cosine_loss, |
|
reversed_forward, |
|
) |
|
from latentsync.utils.util import plot_loss_chart, gather_loss |
|
from latentsync.whisper.audio2feature import Audio2Feature |
|
from latentsync.trepa import TREPALoss |
|
from eval.syncnet import SyncNetEval |
|
from eval.syncnet_detect import SyncNetDetector |
|
from eval.eval_sync_conf import syncnet_eval |
|
import lpips |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def main(config): |
|
|
|
local_rank = init_dist() |
|
global_rank = dist.get_rank() |
|
num_processes = dist.get_world_size() |
|
is_main_process = global_rank == 0 |
|
|
|
seed = config.run.seed + global_rank |
|
set_seed(seed) |
|
|
|
|
|
folder_name = "train" + datetime.datetime.now().strftime(f"-%Y_%m_%d-%H:%M:%S") |
|
output_dir = os.path.join(config.data.train_output_dir, folder_name) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
|
|
if is_main_process: |
|
diffusers.utils.logging.set_verbosity_info() |
|
os.makedirs(output_dir, exist_ok=True) |
|
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True) |
|
os.makedirs(f"{output_dir}/val_videos", exist_ok=True) |
|
os.makedirs(f"{output_dir}/loss_charts", exist_ok=True) |
|
shutil.copy(config.unet_config_path, output_dir) |
|
shutil.copy(config.data.syncnet_config_path, output_dir) |
|
|
|
device = torch.device(local_rank) |
|
|
|
noise_scheduler = DDIMScheduler.from_pretrained("configs") |
|
|
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) |
|
vae.config.scaling_factor = 0.18215 |
|
vae.config.shift_factor = 0 |
|
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1) |
|
vae.requires_grad_(False) |
|
vae.to(device) |
|
|
|
syncnet_eval_model = SyncNetEval(device=device) |
|
syncnet_eval_model.loadParameters("checkpoints/auxiliary/syncnet_v2.model") |
|
|
|
syncnet_detector = SyncNetDetector(device=device, detect_results_dir="detect_results") |
|
|
|
if config.model.cross_attention_dim == 768: |
|
whisper_model_path = "checkpoints/whisper/small.pt" |
|
elif config.model.cross_attention_dim == 384: |
|
whisper_model_path = "checkpoints/whisper/tiny.pt" |
|
else: |
|
raise NotImplementedError("cross_attention_dim must be 768 or 384") |
|
|
|
audio_encoder = Audio2Feature( |
|
model_path=whisper_model_path, |
|
device=device, |
|
audio_embeds_cache_dir=config.data.audio_embeds_cache_dir, |
|
num_frames=config.data.num_frames, |
|
) |
|
|
|
unet, resume_global_step = UNet3DConditionModel.from_pretrained( |
|
OmegaConf.to_container(config.model), |
|
config.ckpt.resume_ckpt_path, |
|
device=device, |
|
) |
|
|
|
if config.model.add_audio_layer and config.run.use_syncnet: |
|
syncnet_config = OmegaConf.load(config.data.syncnet_config_path) |
|
if syncnet_config.ckpt.inference_ckpt_path == "": |
|
raise ValueError("SyncNet path is not provided") |
|
syncnet = SyncNet(OmegaConf.to_container(syncnet_config.model)).to(device=device, dtype=torch.float16) |
|
syncnet_checkpoint = torch.load(syncnet_config.ckpt.inference_ckpt_path, map_location=device) |
|
syncnet.load_state_dict(syncnet_checkpoint["state_dict"]) |
|
syncnet.requires_grad_(False) |
|
|
|
unet.requires_grad_(True) |
|
trainable_params = list(unet.parameters()) |
|
|
|
if config.optimizer.scale_lr: |
|
config.optimizer.lr = config.optimizer.lr * num_processes |
|
|
|
optimizer = torch.optim.AdamW(trainable_params, lr=config.optimizer.lr) |
|
|
|
if is_main_process: |
|
logger.info(f"trainable params number: {len(trainable_params)}") |
|
logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M") |
|
|
|
|
|
if config.run.enable_xformers_memory_efficient_attention: |
|
if is_xformers_available(): |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
if config.run.enable_gradient_checkpointing: |
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
train_dataset = UNetDataset(config.data.train_data_dir, config) |
|
distributed_sampler = DistributedSampler( |
|
train_dataset, |
|
num_replicas=num_processes, |
|
rank=global_rank, |
|
shuffle=True, |
|
seed=config.run.seed, |
|
) |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=config.data.batch_size, |
|
shuffle=False, |
|
sampler=distributed_sampler, |
|
num_workers=config.data.num_workers, |
|
pin_memory=False, |
|
drop_last=True, |
|
worker_init_fn=train_dataset.worker_init_fn, |
|
) |
|
|
|
|
|
if config.run.max_train_steps == -1: |
|
assert config.run.max_train_epochs != -1 |
|
config.run.max_train_steps = config.run.max_train_epochs * len(train_dataloader) |
|
|
|
|
|
lr_scheduler = get_scheduler( |
|
config.optimizer.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=config.optimizer.lr_warmup_steps, |
|
num_training_steps=config.run.max_train_steps, |
|
) |
|
|
|
if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise: |
|
lpips_loss_func = lpips.LPIPS(net="vgg").to(device) |
|
|
|
if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise: |
|
trepa_loss_func = TREPALoss(device=device) |
|
|
|
|
|
pipeline = LipsyncPipeline( |
|
vae=vae, |
|
audio_encoder=audio_encoder, |
|
unet=unet, |
|
scheduler=noise_scheduler, |
|
).to(device) |
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
unet = DDP(unet, device_ids=[local_rank], output_device=local_rank) |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader)) |
|
|
|
num_train_epochs = math.ceil(config.run.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
total_batch_size = config.data.batch_size * num_processes |
|
|
|
if is_main_process: |
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {config.data.batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Total optimization steps = {config.run.max_train_steps}") |
|
global_step = resume_global_step |
|
first_epoch = resume_global_step // num_update_steps_per_epoch |
|
|
|
|
|
progress_bar = tqdm( |
|
range(0, config.run.max_train_steps), |
|
initial=resume_global_step, |
|
desc="Steps", |
|
disable=not is_main_process, |
|
) |
|
|
|
train_step_list = [] |
|
sync_loss_list = [] |
|
recon_loss_list = [] |
|
|
|
val_step_list = [] |
|
sync_conf_list = [] |
|
|
|
|
|
scaler = torch.cuda.amp.GradScaler() if config.run.mixed_precision_training else None |
|
|
|
for epoch in range(first_epoch, num_train_epochs): |
|
train_dataloader.sampler.set_epoch(epoch) |
|
unet.train() |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
|
|
|
|
if config.model.add_audio_layer: |
|
if batch["mel"] != []: |
|
mel = batch["mel"].to(device, dtype=torch.float16) |
|
|
|
audio_embeds_list = [] |
|
try: |
|
for idx in range(len(batch["video_path"])): |
|
video_path = batch["video_path"][idx] |
|
start_idx = batch["start_idx"][idx] |
|
|
|
with torch.no_grad(): |
|
audio_feat = audio_encoder.audio2feat(video_path) |
|
audio_embeds = audio_encoder.crop_overlap_audio_window(audio_feat, start_idx) |
|
audio_embeds_list.append(audio_embeds) |
|
except Exception as e: |
|
logger.info(f"{type(e).__name__} - {e} - {video_path}") |
|
continue |
|
audio_embeds = torch.stack(audio_embeds_list) |
|
audio_embeds = audio_embeds.to(device, dtype=torch.float16) |
|
else: |
|
audio_embeds = None |
|
|
|
|
|
gt_images = batch["gt"].to(device, dtype=torch.float16) |
|
gt_masked_images = batch["masked_gt"].to(device, dtype=torch.float16) |
|
mask = batch["mask"].to(device, dtype=torch.float16) |
|
ref_images = batch["ref"].to(device, dtype=torch.float16) |
|
|
|
gt_images = rearrange(gt_images, "b f c h w -> (b f) c h w") |
|
gt_masked_images = rearrange(gt_masked_images, "b f c h w -> (b f) c h w") |
|
mask = rearrange(mask, "b f c h w -> (b f) c h w") |
|
ref_images = rearrange(ref_images, "b f c h w -> (b f) c h w") |
|
|
|
with torch.no_grad(): |
|
gt_latents = vae.encode(gt_images).latent_dist.sample() |
|
gt_masked_images = vae.encode(gt_masked_images).latent_dist.sample() |
|
ref_images = vae.encode(ref_images).latent_dist.sample() |
|
|
|
mask = torch.nn.functional.interpolate(mask, size=config.data.resolution // vae_scale_factor) |
|
|
|
gt_latents = ( |
|
rearrange(gt_latents, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor |
|
) * vae.config.scaling_factor |
|
gt_masked_images = ( |
|
rearrange(gt_masked_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) |
|
- vae.config.shift_factor |
|
) * vae.config.scaling_factor |
|
ref_images = ( |
|
rearrange(ref_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) - vae.config.shift_factor |
|
) * vae.config.scaling_factor |
|
mask = rearrange(mask, "(b f) c h w -> b c f h w", f=config.data.num_frames) |
|
|
|
|
|
if config.run.use_mixed_noise: |
|
|
|
noise_shared_std_dev = (config.run.mixed_noise_alpha**2 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5 |
|
noise_shared = torch.randn_like(gt_latents) * noise_shared_std_dev |
|
noise_shared = noise_shared[:, :, 0:1].repeat(1, 1, config.data.num_frames, 1, 1) |
|
|
|
noise_ind_std_dev = (1 / (1 + config.run.mixed_noise_alpha**2)) ** 0.5 |
|
noise_ind = torch.randn_like(gt_latents) * noise_ind_std_dev |
|
noise = noise_ind + noise_shared |
|
else: |
|
noise = torch.randn_like(gt_latents) |
|
noise = noise[:, :, 0:1].repeat( |
|
1, 1, config.data.num_frames, 1, 1 |
|
) |
|
|
|
bsz = gt_latents.shape[0] |
|
|
|
|
|
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=gt_latents.device) |
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
noisy_tensor = noise_scheduler.add_noise(gt_latents, noise, timesteps) |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
raise NotImplementedError |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
unet_input = torch.cat([noisy_tensor, mask, gt_masked_images, ref_images], dim=1) |
|
|
|
|
|
|
|
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=config.run.mixed_precision_training): |
|
pred_noise = unet(unet_input, timesteps, encoder_hidden_states=audio_embeds).sample |
|
|
|
if config.run.recon_loss_weight != 0: |
|
recon_loss = F.mse_loss(pred_noise.float(), target.float(), reduction="mean") |
|
else: |
|
recon_loss = 0 |
|
|
|
pred_latents = reversed_forward(noise_scheduler, pred_noise, timesteps, noisy_tensor) |
|
|
|
if config.run.pixel_space_supervise: |
|
pred_images = vae.decode( |
|
rearrange(pred_latents, "b c f h w -> (b f) c h w") / vae.config.scaling_factor |
|
+ vae.config.shift_factor |
|
).sample |
|
|
|
if config.run.perceptual_loss_weight != 0 and config.run.pixel_space_supervise: |
|
pred_images_perceptual = pred_images[:, :, pred_images.shape[2] // 2 :, :] |
|
gt_images_perceptual = gt_images[:, :, gt_images.shape[2] // 2 :, :] |
|
lpips_loss = lpips_loss_func(pred_images_perceptual.float(), gt_images_perceptual.float()).mean() |
|
else: |
|
lpips_loss = 0 |
|
|
|
if config.run.trepa_loss_weight != 0 and config.run.pixel_space_supervise: |
|
trepa_pred_images = rearrange(pred_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) |
|
trepa_gt_images = rearrange(gt_images, "(b f) c h w -> b c f h w", f=config.data.num_frames) |
|
trepa_loss = trepa_loss_func(trepa_pred_images, trepa_gt_images) |
|
else: |
|
trepa_loss = 0 |
|
|
|
if config.model.add_audio_layer and config.run.use_syncnet: |
|
if config.run.pixel_space_supervise: |
|
syncnet_input = rearrange(pred_images, "(b f) c h w -> b (f c) h w", f=config.data.num_frames) |
|
else: |
|
syncnet_input = rearrange(pred_latents, "b c f h w -> b (f c) h w") |
|
|
|
if syncnet_config.data.lower_half: |
|
height = syncnet_input.shape[2] |
|
syncnet_input = syncnet_input[:, :, height // 2 :, :] |
|
ones_tensor = torch.ones((config.data.batch_size, 1)).float().to(device=device) |
|
vision_embeds, audio_embeds = syncnet(syncnet_input, mel) |
|
sync_loss = cosine_loss(vision_embeds.float(), audio_embeds.float(), ones_tensor).mean() |
|
sync_loss_list.append(gather_loss(sync_loss, device)) |
|
else: |
|
sync_loss = 0 |
|
|
|
loss = ( |
|
recon_loss * config.run.recon_loss_weight |
|
+ sync_loss * config.run.sync_loss_weight |
|
+ lpips_loss * config.run.perceptual_loss_weight |
|
+ trepa_loss * config.run.trepa_loss_weight |
|
) |
|
|
|
train_step_list.append(global_step) |
|
if config.run.recon_loss_weight != 0: |
|
recon_loss_list.append(gather_loss(recon_loss, device)) |
|
|
|
optimizer.zero_grad() |
|
|
|
|
|
if config.run.mixed_precision_training: |
|
scaler.scale(loss).backward() |
|
""" >>> gradient clipping >>> """ |
|
scaler.unscale_(optimizer) |
|
torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm) |
|
""" <<< gradient clipping <<< """ |
|
scaler.step(optimizer) |
|
scaler.update() |
|
else: |
|
loss.backward() |
|
""" >>> gradient clipping >>> """ |
|
torch.nn.utils.clip_grad_norm_(unet.parameters(), config.optimizer.max_grad_norm) |
|
""" <<< gradient clipping <<< """ |
|
optimizer.step() |
|
|
|
|
|
|
|
|
|
lr_scheduler.step() |
|
progress_bar.update(1) |
|
global_step += 1 |
|
|
|
|
|
|
|
|
|
if is_main_process and (global_step % config.ckpt.save_ckpt_steps == 0): |
|
if config.run.recon_loss_weight != 0: |
|
plot_loss_chart( |
|
os.path.join(output_dir, f"loss_charts/recon_loss_chart-{global_step}.png"), |
|
("Reconstruction loss", train_step_list, recon_loss_list), |
|
) |
|
if config.model.add_audio_layer: |
|
if sync_loss_list != []: |
|
plot_loss_chart( |
|
os.path.join(output_dir, f"loss_charts/sync_loss_chart-{global_step}.png"), |
|
("Sync loss", train_step_list, sync_loss_list), |
|
) |
|
model_save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}.pt") |
|
state_dict = { |
|
"global_step": global_step, |
|
"state_dict": unet.module.state_dict(), |
|
} |
|
try: |
|
torch.save(state_dict, model_save_path) |
|
logger.info(f"Saved checkpoint to {model_save_path}") |
|
except Exception as e: |
|
logger.error(f"Error saving model: {e}") |
|
|
|
|
|
logger.info("Running validation... ") |
|
|
|
validation_video_out_path = os.path.join(output_dir, f"val_videos/val_video_{global_step}.mp4") |
|
validation_video_mask_path = os.path.join(output_dir, f"val_videos/val_video_mask.mp4") |
|
|
|
with torch.autocast(device_type="cuda", dtype=torch.float16): |
|
pipeline( |
|
config.data.val_video_path, |
|
config.data.val_audio_path, |
|
validation_video_out_path, |
|
validation_video_mask_path, |
|
num_frames=config.data.num_frames, |
|
num_inference_steps=config.run.inference_steps, |
|
guidance_scale=config.run.guidance_scale, |
|
weight_dtype=torch.float16, |
|
width=config.data.resolution, |
|
height=config.data.resolution, |
|
mask=config.data.mask, |
|
) |
|
|
|
logger.info(f"Saved validation video output to {validation_video_out_path}") |
|
|
|
val_step_list.append(global_step) |
|
|
|
if config.model.add_audio_layer: |
|
try: |
|
_, conf = syncnet_eval(syncnet_eval_model, syncnet_detector, validation_video_out_path, "temp") |
|
except Exception as e: |
|
logger.info(e) |
|
conf = 0 |
|
sync_conf_list.append(conf) |
|
plot_loss_chart( |
|
os.path.join(output_dir, f"loss_charts/sync_conf_chart-{global_step}.png"), |
|
("Sync confidence", val_step_list, sync_conf_list), |
|
) |
|
|
|
logs = {"step_loss": loss.item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
|
|
if global_step >= config.run.max_train_steps: |
|
break |
|
|
|
progress_bar.close() |
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--unet_config_path", type=str, default="configs/unet.yaml") |
|
|
|
args = parser.parse_args() |
|
config = OmegaConf.load(args.unet_config_path) |
|
config.unet_config_path = args.unet_config_path |
|
|
|
main(config) |
|
|