Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize the zero-shot classification pipeline
|
5 |
+
@st.cache_resource
|
6 |
+
def load_classifier():
|
7 |
+
return pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
8 |
+
|
9 |
+
classifier = load_classifier()
|
10 |
+
|
11 |
+
# Streamlit app interface
|
12 |
+
st.title("Webpage Subject Classifier")
|
13 |
+
st.write(
|
14 |
+
"""
|
15 |
+
Enter the text content of a webpage below to classify it into one of the following subjects:
|
16 |
+
- Mathematics
|
17 |
+
- Language Arts
|
18 |
+
- Social Studies
|
19 |
+
- Science
|
20 |
+
"""
|
21 |
+
)
|
22 |
+
|
23 |
+
# Text input area
|
24 |
+
text_input = st.text_area("Paste the webpage content here:", height=200)
|
25 |
+
|
26 |
+
# Define the candidate labels
|
27 |
+
labels = ["Mathematics", "Language Arts", "Social Studies", "Science"]
|
28 |
+
|
29 |
+
# Perform classification when the "Classify" button is clicked
|
30 |
+
if st.button("Classify"):
|
31 |
+
if text_input.strip():
|
32 |
+
with st.spinner("Classifying..."):
|
33 |
+
result = classifier(text_input, labels)
|
34 |
+
predicted_label = result["labels"][0]
|
35 |
+
st.success(f"The predicted subject is: **{predicted_label}**")
|
36 |
+
else:
|
37 |
+
st.warning("Please enter some text to classify.")
|