Spaces:
Build error
Build error
Upload server2.py (#2)
Browse files- Upload server2.py (78f0027f7b97edad380ac1958de682d2256449dd)
Co-authored-by: Nossa <[email protected]>
- server2.py +136 -0
server2.py
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import seaborn as sns
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import joblib
|
| 6 |
+
from sklearn.tree import DecisionTreeClassifier, XGBClassifier #using sklearn decisiontreeclassifier
|
| 7 |
+
from sklearn.model_selection import train_test_split
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import shutil
|
| 11 |
+
|
| 12 |
+
# Define the directory for FHE client/server files
|
| 13 |
+
fhe_directory = '/tmp/fhe_client_server_files/'
|
| 14 |
+
|
| 15 |
+
# Create the directory if it does not exist
|
| 16 |
+
if not os.path.exists(fhe_directory):
|
| 17 |
+
os.makedirs(fhe_directory)
|
| 18 |
+
else:
|
| 19 |
+
# If it exists, delete its contents
|
| 20 |
+
shutil.rmtree(fhe_directory)
|
| 21 |
+
os.makedirs(fhe_directory)
|
| 22 |
+
|
| 23 |
+
data=pd.read_csv('data/heart.xls')
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
data.info() #checking the info
|
| 27 |
+
|
| 28 |
+
data_corr=data.corr()
|
| 29 |
+
|
| 30 |
+
plt.figure(figsize=(20,20))
|
| 31 |
+
sns.heatmap(data=data_corr,annot=True)
|
| 32 |
+
#Heatmap for data
|
| 33 |
+
"""
|
| 34 |
+
# Get the Data
|
| 35 |
+
X_train, y_train, X_val, y_val = train_test_split()
|
| 36 |
+
classifier = XGBClassifier()
|
| 37 |
+
# Training the Model
|
| 38 |
+
classifier = classifier.fit(X_train, y_train)
|
| 39 |
+
# Trained Model Evaluation on Validation Dataset
|
| 40 |
+
confidence = classifier.score(X_val, y_val)
|
| 41 |
+
# Validation Data Prediction
|
| 42 |
+
y_pred = classifier.predict(X_val)
|
| 43 |
+
# Model Validation Accuracy
|
| 44 |
+
accuracy = accuracy_score(y_val, y_pred)
|
| 45 |
+
# Model Confusion Matrix
|
| 46 |
+
conf_mat = confusion_matrix(y_val, y_pred)
|
| 47 |
+
# Model Classification Report
|
| 48 |
+
clf_report = classification_report(y_val, y_pred)
|
| 49 |
+
# Model Cross Validation Score
|
| 50 |
+
score = cross_val_score(classifier, X_val, y_val, cv=3)
|
| 51 |
+
|
| 52 |
+
try:
|
| 53 |
+
# Load Trained Model
|
| 54 |
+
clf = load(str(self.model_save_path + saved_model_name + ".joblib"))
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print("Model not found...")
|
| 57 |
+
|
| 58 |
+
if test_data is not None:
|
| 59 |
+
result = clf.predict(test_data)
|
| 60 |
+
print(result)
|
| 61 |
+
else:
|
| 62 |
+
result = clf.predict(self.test_features)
|
| 63 |
+
accuracy = accuracy_score(self.test_labels, result)
|
| 64 |
+
clf_report = classification_report(self.test_labels, result)
|
| 65 |
+
print(accuracy, clf_report)
|
| 66 |
+
"""
|
| 67 |
+
####################
|
| 68 |
+
feature_value=np.array(data_corr['output'])
|
| 69 |
+
for i in range(len(feature_value)):
|
| 70 |
+
if feature_value[i]<0:
|
| 71 |
+
feature_value[i]=-feature_value[i]
|
| 72 |
+
|
| 73 |
+
print(feature_value)
|
| 74 |
+
|
| 75 |
+
features_corr=pd.DataFrame(feature_value,index=data_corr['output'].index,columns=['correalation'])
|
| 76 |
+
|
| 77 |
+
feature_sorted=features_corr.sort_values(by=['correalation'],ascending=False)
|
| 78 |
+
|
| 79 |
+
feature_selected=feature_sorted.index
|
| 80 |
+
|
| 81 |
+
feature_selected #selected features which are very much correalated
|
| 82 |
+
|
| 83 |
+
clean_data=data[feature_selected]
|
| 84 |
+
|
| 85 |
+
#making input and output dataset
|
| 86 |
+
X=clean_data.iloc[:,1:]
|
| 87 |
+
Y=clean_data['output']
|
| 88 |
+
|
| 89 |
+
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.25,random_state=0)
|
| 90 |
+
|
| 91 |
+
print(x_train.shape,y_train.shape,x_test.shape,y_test.shape) #data is splited in traing and testing dataset
|
| 92 |
+
|
| 93 |
+
# feature scaling
|
| 94 |
+
from sklearn.preprocessing import StandardScaler
|
| 95 |
+
sc=StandardScaler()
|
| 96 |
+
x_train=sc.fit_transform(x_train)
|
| 97 |
+
x_test=sc.transform(x_test)
|
| 98 |
+
|
| 99 |
+
#training our model
|
| 100 |
+
dt=XGBClassifier(criterion='entropy',max_depth=6)
|
| 101 |
+
dt.fit(x_train,y_train)
|
| 102 |
+
#dt.compile(x_trqin)
|
| 103 |
+
|
| 104 |
+
#predicting the value on testing data
|
| 105 |
+
y_pred=dt.predict(x_test)
|
| 106 |
+
|
| 107 |
+
#ploting the data
|
| 108 |
+
from sklearn.metrics import confusion_matrix
|
| 109 |
+
conf_mat=confusion_matrix(y_test,y_pred)
|
| 110 |
+
print(conf_mat)
|
| 111 |
+
accuracy=dt.score(x_test,y_test)
|
| 112 |
+
print("\nThe accuracy of decisiontreelassifier on Heart disease prediction dataset is "+str(round(accuracy*100,2))+"%")
|
| 113 |
+
|
| 114 |
+
joblib.dump(dt, 'heart_disease_dt_model.pkl')
|
| 115 |
+
|
| 116 |
+
from concrete.ml.sklearn import DecisionTreeClassifier as ConcreteDecisionTreeClassifier
|
| 117 |
+
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBClassifier
|
| 118 |
+
|
| 119 |
+
fhe_compatible = ConcreteXGBClassifier.from_sklearn_model(dt, x_train, n_bits = 10) #de FHE
|
| 120 |
+
fhe_compatible.compile(x_train)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
#### server
|
| 128 |
+
from concrete.ml.deployment import FHEModelDev, FHEModelClient, FHEModelServer
|
| 129 |
+
|
| 130 |
+
# Setup the development environment
|
| 131 |
+
dev = FHEModelDev(path_dir=fhe_directory, model=fhe_compatible)
|
| 132 |
+
dev.save()
|
| 133 |
+
|
| 134 |
+
# Setup the server
|
| 135 |
+
server = FHEModelServer(path_dir=fhe_directory)
|
| 136 |
+
server.load()
|